Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 936
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(8): 1770-1781, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047729

RESUMO

Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads do not adequately and efficiently remove various allele-specific read mapping biases, such as reference bias arising from reads containing the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the reference allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-specific read mapping biases. Ornaments removes reference bias by mapping reads to a personalized transcriptome and ambiguous mapping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity than WASP, which detects imprinted signals only at gene level.


Assuntos
Alelos , Humanos , Transcriptoma/genética , Impressão Genômica , Análise de Sequência de RNA/métodos , Software , Perfilação da Expressão Gênica/métodos
2.
Genet Epidemiol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533840

RESUMO

Copy number variants (CNVs) are prevalent in the human genome and are found to have a profound effect on genomic organization and human diseases. Discovering disease-associated CNVs is critical for understanding the pathogenesis of diseases and aiding their diagnosis and treatment. However, traditional methods for assessing the association between CNVs and disease risks adopt a two-stage strategy conducting quantitative CNV measurements first and then testing for association, which may lead to biased association estimation and low statistical power, serving as a major barrier in routine genome-wide assessment of such variation. In this article, we developed One-Stage CNV-disease Association Analysis (OSCAA), a flexible algorithm to discover disease-associated CNVs for both quantitative and qualitative traits. OSCAA employs a two-dimensional Gaussian mixture model that is built upon the PCs from copy number intensities, accounting for technical biases in CNV detection while simultaneously testing for their effect on outcome traits. In OSCAA, CNVs are identified and their associations with disease risk are evaluated simultaneously in a single step, taking into account the uncertainty of CNV identification in the statistical model. Our simulations demonstrated that OSCAA outperformed the existing one-stage method and traditional two-stage methods by yielding a more accurate estimate of the CNV-disease association, especially for short CNVs or CNVs with weak signals. In conclusion, OSCAA is a powerful and flexible approach for CNV association testing with high sensitivity and specificity, which can be easily applied to different traits and clinical risk predictions.

3.
Biostatistics ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649751

RESUMO

CRISPR genome engineering and single-cell RNA sequencing have accelerated biological discovery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations in individual cells to changes in gene expression and illuminating regulatory networks underlying diseases. Despite their promise, single-cell CRISPR screens present considerable statistical challenges. We demonstrate through theoretical and real data analyses that a standard method for estimation and inference in single-cell CRISPR screens-"thresholded regression"-exhibits attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select tuning parameter. To overcome these difficulties, we introduce GLM-EIV ("GLM-based errors-in-variables"), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical errors-in-variables model to responses and noisy predictors that are exponential family-distributed and potentially impacted by the same set of confounding variables. We develop a computational infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g. Microsoft Azure) and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights.

4.
Biostatistics ; 25(2): 354-384, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881693

RESUMO

Naive estimates of incidence and infection fatality rates (IFR) of coronavirus disease 2019 suffer from a variety of biases, many of which relate to preferential testing. This has motivated epidemiologists from around the globe to conduct serosurveys that measure the immunity of individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titer values) are then used as a proxy for previous or current infection. However, statistical methods that use this data to its full potential have yet to be developed. Previous researchers have discretized these continuous values, discarding potentially useful information. In this article, we demonstrate how multivariate mixture models can be used in combination with post-stratification to estimate cumulative incidence and IFR in an approximate Bayesian framework without discretization. In doing so, we account for uncertainty from both the estimated number of infections and incomplete deaths data to provide estimates of IFR. This method is demonstrated using data from the Action to Beat Coronavirus erosurvey in Canada.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Teorema de Bayes , Incidência , SARS-CoV-2
5.
Biostatistics ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002144

RESUMO

High-dimensional omics data often contain intricate and multifaceted information, resulting in the coexistence of multiple plausible sample partitions based on different subsets of selected features. Conventional clustering methods typically yield only one clustering solution, limiting their capacity to fully capture all facets of cluster structures in high-dimensional data. To address this challenge, we propose a model-based multifacet clustering (MFClust) method based on a mixture of Gaussian mixture models, where the former mixture achieves facet assignment for gene features and the latter mixture determines cluster assignment of samples. We demonstrate superior facet and cluster assignment accuracy of MFClust through simulation studies. The proposed method is applied to three transcriptomic applications from postmortem brain and lung disease studies. The result captures multifacet clustering structures associated with critical clinical variables and provides intriguing biological insights for further hypothesis generation and discovery.

6.
Biostatistics ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637995

RESUMO

Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.

7.
Biostatistics ; 25(3): 666-680, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141227

RESUMO

With rapid development of techniques to measure brain activity and structure, statistical methods for analyzing modern brain-imaging data play an important role in the advancement of science. Imaging data that measure brain function are usually multivariate high-density longitudinal data and are heterogeneous across both imaging sources and subjects, which lead to various statistical and computational challenges. In this article, we propose a group-based method to cluster a collection of multivariate high-density longitudinal data via a Bayesian mixture of smoothing splines. Our method assumes each multivariate high-density longitudinal trajectory is a mixture of multiple components with different mixing weights. Time-independent covariates are assumed to be associated with the mixture components and are incorporated via logistic weights of a mixture-of-experts model. We formulate this approach under a fully Bayesian framework using Gibbs sampling where the number of components is selected based on a deviance information criterion. The proposed method is compared to existing methods via simulation studies and is applied to a study on functional near-infrared spectroscopy, which aims to understand infant emotional reactivity and recovery from stress. The results reveal distinct patterns of brain activity, as well as associations between these patterns and selected covariates.


Assuntos
Teorema de Bayes , Humanos , Estudos Longitudinais , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Interpretação Estatística de Dados , Modelos Estatísticos , Lactente , Análise Multivariada , Bioestatística/métodos
8.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36653899

RESUMO

Gene regulatory networks govern complex gene expression programs in various biological phenomena, including embryonic development, cell fate decisions and oncogenesis. Single-cell techniques are increasingly being used to study gene expression, providing higher resolution than traditional approaches. However, inferring a comprehensive gene regulatory network across different cell types remains a challenge. Here, we propose to construct context-dependent gene regulatory networks (CDGRNs) from single-cell RNA sequencing data utilizing both spliced and unspliced transcript expression levels. A gene regulatory network is decomposed into subnetworks corresponding to different transcriptomic contexts. Each subnetwork comprises the consensus active regulation pairs of transcription factors and their target genes shared by a group of cells, inferred by a Gaussian mixture model. We find that the union of gene regulation pairs in all contexts is sufficient to reconstruct differentiation trajectories. Functions specific to the cell cycle, cell differentiation or tissue-specific functions are enriched throughout the developmental process in each context. Surprisingly, we also observe that the network entropy of CDGRNs decreases along differentiation trajectories, indicating directionality in differentiation. Overall, CDGRN allows us to establish the connection between gene regulation at the molecular level and cell differentiation at the macroscopic level.


Assuntos
Desenvolvimento Embrionário , Redes Reguladoras de Genes , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica
9.
Syst Biol ; 73(2): 375-391, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38421146

RESUMO

Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call mixtures across sites and trees (MAST). This model extends a prior implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to multiple primate datasets and found that it can recover the signal of ILS in the Great Apes, as well as the asymmetry in minor trees caused by introgression among several macaque species. When applied to a dataset of 4 Platyrrhine species for which standard concatenated maximum likelihood (ML) and gene tree approaches disagree, we observe that MAST gives the highest weight (i.e., the largest proportion of sites) to the tree also supported by gene tree approaches. These results suggest that the MAST model is able to analyze a concatenated alignment using ML while avoiding some of the biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future.


Assuntos
Classificação , Filogenia , Classificação/métodos , Modelos Genéticos , Simulação por Computador , Software , Animais
10.
BMC Genomics ; 25(1): 25, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166601

RESUMO

BACKGROUND: Copy number alteration (CNA) is one of the major genomic variations that frequently occur in cancers, and accurate inference of CNAs is essential for unmasking intra-tumor heterogeneity (ITH) and tumor evolutionary history. Single-cell DNA sequencing (scDNA-seq) makes it convenient to profile CNAs at single-cell resolution, and thus aids in better characterization of ITH. Despite that several computational methods have been proposed to decipher single-cell CNAs, their performance is limited in either breakpoint detection or copy number estimation due to the high dimensionality and noisy nature of read counts data. RESULTS: By treating breakpoint detection as a process to segment high dimensional read count sequence, we develop a novel method called DeepCNA for cross-cell segmentation of read count sequence and per-cell inference of CNAs. To cope with the difficulty of segmentation, an autoencoder (AE) network is employed in DeepCNA to project the original data into a low-dimensional space, where the breakpoints can be efficiently detected along each latent dimension and further merged to obtain the final breakpoints. Unlike the existing methods that manually calculate certain statistics of read counts to find breakpoints, the AE model makes it convenient to automatically learn the representations. Based on the inferred breakpoints, we employ a mixture model to predict copy numbers of segments for each cell, and leverage expectation-maximization algorithm to efficiently estimate cell ploidy by exploring the most abundant copy number state. Benchmarking results on simulated and real data demonstrate our method is able to accurately infer breakpoints as well as absolute copy numbers and surpasses the existing methods under different test conditions. DeepCNA can be accessed at: https://github.com/zhyu-lab/deepcna . CONCLUSIONS: Profiling single-cell CNAs based on deep learning is becoming a new paradigm of scDNA-seq data analysis, and DeepCNA is an enhancement to the current arsenal of computational methods for investigating cancer genomics.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Algoritmos , Genômica/métodos , Análise de Sequência de DNA , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa