RESUMO
Metallic sensation is often described as unpleasant and can reduce acceptance of foods and beverages and compliance with medication. Masking and suppressing aversive sensations can help to improve acceptance of these products, with many successful strategies identified for bitterness. However, there are few studies investigating effective strategies for suppressing metallic sensation. This study aims to assess the effectiveness of mixture suppression to reduce the metallic sensation elicited from ferrous sulfate and examine whether individual differences in metallic sensation are associated with the effectiveness of suppression strategies. To achieve this, participants (n = 121) reported the intensity of suprathreshold concentrations of ferrous sulfate alone and in binary mixtures with three tastants, specifically, sucrose, citric acid, and sodium chloride. The results revealed that metallic sensation ratings were significantly lower for every binary mixture tested compared to ferrous sulfate presented in isolation. For 0.3 mM ferrous sulfate, sucrose was identified to be the most effective compound in suppressing metallic sensation, followed by citric acid and sodium chloride. For the 1.0 mM ferrous sulfate solutions, all tastants were equally effective at suppressing metallic sensation. In addition, there is a significant interaction between the perceived metallic intensity and the effectiveness of each strategy. These findings suggest that sucrose, citric acid, and sodium chloride have the potential to be effective in suppressing metallic sensation.
Assuntos
Ácido Cítrico , Compostos Ferrosos , Cloreto de Sódio , Humanos , Ácido Cítrico/farmacologia , Cloreto de Sódio/farmacologia , Sacarose/farmacologia , Paladar , SensaçãoRESUMO
The underlying mechanisms of taste interactions in humans are not well understood, and three mechanisms have been proposed, namely a chemical interaction, a peripheral physiological, and a central mechanism. In the present study, it was investigated which of these mechanisms causes the suppression of sweetness by citric acid. This was investigated using a split-tongue gustometer that can stimulate the two sides of the tongue with different stimuli simultaneously, enabling a comparison of sucrose and citric acid presented either separately on each side of the tongue simultaneously or in a mixture on one side. Two studies were conducted using low (Study 1; n = 50) and high (Study 2: n = 59) concentrations of sucrose (2.5% (w/w) and 10% (w/w), respectively), and citric acid (0.14% (w/w) and 0.18% (w/w), respectively). In neither of the studies was there a significant difference in sweetness intensity ratings between the two conditions where sucrose and citric acid were presented either separately or in a mixture form. However, both showed significantly lower sweetness ratings than without citric acid indicating suppression of the sweetness of sucrose from citric acid. This provides strong evidence for a central mechanism for the suppression of the sweetness of sucrose by citric acid. This mechanism seems to be equal in high and low concentrations of both sucrose and citric acid.
Assuntos
Ácido Cítrico , Sacarose , Humanos , Ácido Cítrico/farmacologia , Sacarose/farmacologia , LínguaRESUMO
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Células Receptoras Sensoriais , Olfato/fisiologiaRESUMO
Natural olfactory stimuli are volatile-chemical mixtures in which relative perceptual saliencies determine which odor-components are identified. Odor identification also depends on rapid selective adaptation, as shown for 4 odor stimuli in an earlier experimental simulation of natural conditions. Adapt-test pairs of mixtures of water-soluble, distinct odor stimuli with chemical features in common were studied. Identification decreased for adapted components but increased for unadapted mixture-suppressed components, showing compound identities were retained, not degraded to individual molecular features. Four additional odor stimuli, 1 with 2 perceptible odor notes, and an added "water-adapted" control tested whether this finding would generalize to other 4-compound sets. Selective adaptation of mixtures of the compounds (odors): 3 mM benzaldehyde (cherry), 5 mM maltol (caramel), 1 mM guaiacol (smoke), and 4 mM methyl anthranilate (grape-smoke) again reciprocally unmasked odors of mixture-suppressed components in 2-, 3-, and 4-component mixtures with 2 exceptions. The cherry note of "benzaldehyde" (itself) and the shared note of "methyl anthranilate and guaiacol" (together) were more readily identified. The pervasive mixture-component dominance and dynamic perceptual salience may be mediated through peripheral adaptation and central mutual inhibition of neural responses. Originating in individual olfactory receptor variants, it limits odor identification and provides analytic properties for momentary recognition of a few remaining mixture-components.