RESUMO
The Inhibitory Cascade Model was proposed by Kavanagh and colleagues (Nature, 449, 427-433 [2007]) after their experimental studies on the dental development of murine rodent species. These authors described an activator-inhibitor mechanism that has been employed to predict evolutionary size patterns of mammalian teeth, including hominins. In the present study, we measured the crown area of the three lower permanent molars (M1, M2, and M3) of a large recent modern human sample of male and female individuals from a collection preserved at the Institute of Anthropology of the University of Coimbra (Portugal). The main aim of the present study is to test if the size molar patterns observed in this human sample fits the Inhibitory Cascade Model. For this purpose, we first measured the crown area in those individuals preserving the complete molar series. Measurements were taken in photographs, using a planimeter and following well-tested techniques used in previous works. We then plot the M3 /M1 and M2 /M1 size ratios. Our results show that the premise of the Inhibitory Cascade Model, according to which the average of the crown area of M2 is approximately one-third of the sum of the crown area of the three molars, is fulfilled. However, our results also show that the individual values of a significant number of males and females are out of the 95% confidence interval predicted by the Inhibitory Cascade Model in rodents. As a result, the present analyses suggest that neither the sample of males, nor that of females, nor the pooled sample fits the Inhibitory Cascade Model. It is important to notice that, although this model has been successfully tested in a large number of current human populations, to the best of our knowledge this is the first study in which individual data have been obtained in a recent human population rather than using the average of the sample. Our results evince that, at the individual level, some factors not yet known could interfere with this model masking the modulation of the size on the molar series in modern humans. We suggest that the considerable delay in the onset of M3 formation in modern humans could be related to a weakening of the possible activation/inhibition process for this tooth. Finally, and in support of our conclusions, we have checked that the absolute and relative size of M1 and M2 is not related to the M3 agenesis in our sample. In line with other studies in primates, our results do not support the Inhibitory Cascade Model in a recent human sample. Further research is needed to better understand the genetic basis of this mechanism and its relationship to the phenotype. In this way, we may be able to find out which evolutionary changes may be responsible for the deviations observed in many species, including Homo sapiens.
Assuntos
Hominidae , Dente , Animais , Antropologia , Evolução Biológica , Feminino , Humanos , Masculino , Camundongos , Dente MolarRESUMO
The Middle Pleistocene Sima de los Huesos (SH) site has yielded more than 7.500 human fossil remains belonging to a minimum of 29 individuals. Most of these individuals preserve either the complete mandibular molar series or at least the first (M1 ) and second (M2 ) molars. The inhibitory cascade mathematical model was proposed by Kavanagh et al. (Nature, 449, 427-433 [2007]) after their experimental studies on the dental development of murine rodent species. The activator-inhibitor mechanism of this model has shown its ability for predicting evolutionary size patterns of mammalian teeth, including hominins. The main aim of this study is to test whether the size molar patterns observed in the SH hominins fit the inhibitory cascade model. With this purpose, we have measured the crown area of all SH molars in photographs, using a planimeter and following techniques used and well contrasted in previous works. Following one of the premises of the inhibitory cascade model, we expect that the central tooth (M2 in our case) of a triplet would have the average size of the two outer teeth. The absolute difference between the observed and the expected values for the M2 s ranges from 0.23 to 8.46 mm2 in the SH sample. In terms of percentage, the difference ranges between 0.25% and 10.34%, although in most cases, it is below 5%. The plot of the estimated M3 /M1 and M2 /M1 size ratios obtained in the SH hominins occupies a small area of the theoretical developmental morphospace obtained for rodent species. In addition, the majority of the values are placed near the theoretical line which defines the relationship predicted by the inhibitory cascade model in these mammals. The values of the slope and intercept of the reduced major regression obtained for the SH individuals do not differ significantly from those obtained for rodent species, thus confirming that the size of the molars of the SH hominins fits the inhibitory cascade model. We discuss these results in terms of dental development. Despite the promising results in the SH sample, we draw the attention to the fact that most Early Pleistocene Homo specimens exhibit a pattern (M1 < M2 > M3 ), which is outside the expected theoretical morphospace predicted by the inhibitory cascade model. The shift from the M1 < M2 < M3 size relationship observed in early hominins (including H. habilis) to the M1 > M2 > M3 size relationship, which is predominant in modern humans, includes sequences that depart from predictions of the inhibitory cascade model. Additional studies are required to understand these deviations.
Assuntos
Evolução Biológica , Fósseis , Hominidae , Modelos Teóricos , Dente , AnimaisRESUMO
The inhibitory cascade is a mathematical model for interpreting the relative size of the occlusal surfaces of mammalian molars in terms of developmental mechanisms. The cascade is derived from experimental studies of mouse molars developed in culture, and has been tested and applied to the dentitions of rodents, ungulates, carnivores, and platyrrhines. Results from such applications have provided new information regarding the origins of plesiomorphic traits in mammalian clade and how derived morphologies may arise. In this study we apply the inhibitory cascade model to the postcanine dentition of a sample of Old World primates that includes fossil hominins. The results of this study suggest that the inhibitory cascade (i.e. M1 < M2 < M3 ) describes the relative sizes of the molar occlusal areas of Old World primates and is likely the plesiomorphic condition for this clade. Within that clade, whereas most Old World monkeys have a M1 < M2 < M3 pattern, most apes have a M1 < M2 ≈ M3 pattern. This modified cascade suggests that greater levels of inhibition (or less activation) are acting on the posterior molars of apes, thus facilitating the reduction of M3 s within the apes. With the exception of the baboon genus Papio, extant congeners typically share the same molar inhibitory cascade. The differences in the relative size relationships observed in the molar and premolar-molar cascades of the species included in the fossil hominin genus Paranthropus suggest that although large postcanine teeth are a shared derived trait within this genus, the developmental basis for postcanine megadontia may not be the same in these two Paranthropus taxa. Our results show that phenotypic characters such as postcanine megadontia may not reflect common development.
Assuntos
Evolução Biológica , Cercopithecidae/anatomia & histologia , Hominidae/anatomia & histologia , Modelos Biológicos , Dente Molar/anatomia & histologia , Animais , Oclusão Dentária , Fósseis , OdontogêneseRESUMO
The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.