Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2308945, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948432

RESUMO

The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4I3(rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2. This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.

2.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164070

RESUMO

Molecular perovskites are promising practicable energetic materials with easy access and outstanding performances. Herein, we reported the first comparative thermal research on energetic molecular perovskite structures of (C6H14N2)[NH4(ClO4)3], (C6H14N2)[Na(ClO4)3], and (C6H14ON2)[NH4(ClO4)3] through both calculation and experimental methods with different heating rates such as 2, 5, 10, and 20 °C/min. The peak temperature of thermal decompositions of (C6H14ON2)[NH4(ClO4)3] and (C6H14N2) [Na(ClO4)3] were 384 and 354 °C at the heating rate of 10 °C/min, which are lower than that of (C6H14N2)[NH4(ClO4)3] (401 °C). The choice of organic component with larger molecular volume, as well as the replacement of ammonium cation by alkali cation weakened the cubic cage skeletons; meanwhile, corresponding kinetic parameters were calculated with thermokinetics software. The synergistic catalysis thermal decomposition mechanisms of the molecular perovskites were also investigated based on condensed-phase thermolysis/Fourier-transform infrared spectroscopy method and DSC-TG-FTIR-MS quadruple technology at different temperatures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa