Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649645

RESUMO

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Traumatismos da Medula Espinal , Ubiquitina-Proteína Ligases , Animais , Traumatismos da Medula Espinal/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação da Expressão Gênica
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928011

RESUMO

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Assuntos
Adipócitos Bege , Termogênese , Termogênese/genética , Humanos , Adipócitos Bege/metabolismo , Animais , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Cálcio/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo Bege/metabolismo
3.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674136

RESUMO

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Assuntos
Produtos Agrícolas , Grão Comestível , Melatonina , Estresse Fisiológico , Melatonina/metabolismo , Melatonina/farmacologia , Grão Comestível/metabolismo , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396834

RESUMO

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Assuntos
Regeneração Óssea , Periósteo , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Células-Tronco , Diferenciação Celular , Engenharia Tecidual
5.
J Environ Manage ; 351: 119913, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154222

RESUMO

The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.


Assuntos
Nanotubos de Carbono , Rodopseudomonas , Águas Residuárias , Prata , Corantes/metabolismo , Titânio , Biodegradação Ambiental , Compostos Azo , Catálise
6.
Planta ; 258(2): 45, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462779

RESUMO

MAIN CONCLUSION: We review the application and the molecular regulation of anthocyanins in colorful Brassica crops, the creation of new germplasm resources, and the development and utilization of colorful Brassica crops. Brassica crops are widely cultivated: these include oilseed crops, such as rapeseed, mustards, and root, leaf, and stem vegetable types, such as turnips, cabbages, broccoli, and cauliflowers. Colorful variants exist of these crop species, and asides from increased aesthetic appeal, these may also offer advantages in terms of nutritional content and improved stress resistances. This review provides a comprehensive overview of pigmentation in Brassica as a reference for the selection and breeding of new colorful Brassica varieties for multiple end uses. We summarize the function and molecular regulation of anthocyanins in Brassica crops, the creation of new colorful germplasm resources via different breeding methods, and the development and multifunctional utilization of colorful Brassica crop types.


Assuntos
Brassica napus , Brassica , Brassica/genética , Antocianinas , Melhoramento Vegetal
7.
Plant Cell Environ ; 46(8): 2401-2418, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37190917

RESUMO

High temperatures (HTs) seriously affect the yield and quality of tea. Catechins, derived from the flavonoid pathway, are characteristic compounds that contribute to the flavour of tea leaves. In this study, we first showed that the flavonoid content of tea leaves was significantly reduced under HT conditions via metabolic profiles; and then demonstrated that two transcription factors, CsHSFA1b and CsHSFA2 were activated by HT and negatively regulate flavonoid biosynthesis during HT treatment. Jasmonate (JA), a defensive hormone, plays a key role in plant adaption to environmental stress. However, little has been reported on its involvement in HT response in tea. Herein, we demonstrated that CsHSFA1b and CsHSFA2 activate CsJAZ6 expression through directly binding to heat shock elements in its promoter, and thereby repress the JA pathway. Most secondary metabolites are regulated by JA, including catechin in tea. Our study reported that CsJAZ6 directly interacts with CsEGL3 and CsTTG1 and thereby reduces catechin accumulation. From this, we proposed a CsHSFA-CsJAZ6-mediated HT regulation model of catechin biosynthesis. We also determined that negative regulation of the JA pathway by CsHSFAs and its homologues is conserved in Arabidopsis. These findings broaden the applicability of the regulation of JAZ by HSF transcription factors and further suggest the JA pathway as a valuable candidate for HT-resistant breeding and cultivation.


Assuntos
Camellia sinensis , Catequina , Camellia sinensis/metabolismo , Catequina/metabolismo , Temperatura , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
8.
Crit Rev Biotechnol ; : 1-18, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105513

RESUMO

Fungal α/ß-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/ß-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/ß-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.

9.
Eur J Haematol ; 111(3): 337-344, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37322574

RESUMO

The metabolism of cells and blood circulation allow for the constant production and destruction of red blood cells. Erythrocyte formation allows red blood cells to regenerate, which is crucial for maintaining the equilibrium of the organism. Erythrocyte formation is a multi-step, intricate process with distinct structural and functional characteristics at each stage. Erythropoiesis is regulated by a number of signaling pathways; malfunctional regulatory mechanisms may result in disease and aberrant erythropoiesis. Therefore, this article focuses on a review of the erythroid formation process, related signaling pathways, and red blood cell lineage diseases.


Assuntos
Eritropoese , Doenças Hematológicas , Humanos , Eritrócitos , Diferenciação Celular
10.
Mol Biol Rep ; 50(3): 2883-2892, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538170

RESUMO

Tea, which is mainly produced using the young leaves and buds of tea plants (Camellia sinensis (L.) O. Kuntze), is one of the most common non-alcoholic beverages consumed in the world. The standard of tea mostly depends on the variety and quality of tea plants, which generally grow in subtropical areas, where the warm and humid conditions are also conducive to the occurrence of diseases. In fighting against pathogens, plants rely on their sophisticated innate immune systems which has been extensively studied in model plants. Many components involved in pathogen associated molecular patterns (PAMPs) triggered immunity (PTI) and effector triggered immunity (ETI) have been found. Nevertheless, the molecular regulating network against pathogens (e.g., Pseudopestalotiopsis sp., Colletotrichum sp. and Exobasidium vexans) causing widespread disease (such as grey blight disease, anthracnose, and blister blight) in tea plants is still unclear. With the recent release of the genome data of tea plants, numerous genes involved in tea plant immunity have been identified, and the molecular mechanisms behind tea plant immunity is being studied. Therefore, the recent achievements in identifying and cloning functional genes/gene families, in finding crucial components of tea immunity signaling pathways, and in understanding the role of secondary metabolites have been summarized and the opportunities and challenges in the future studies of tea immunity are highlighted in this review.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175598

RESUMO

Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
12.
World J Microbiol Biotechnol ; 39(8): 204, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209190

RESUMO

Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.


Assuntos
Epigênese Genética , Fungos , Metabolismo Secundário , Fungos/genética , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-37193003

RESUMO

Background: The purpose of this review article is to understand tooth root development and its regulation through evolution and epigenetics as well as future implications involving root regeneration and tissue engineering. Types of Studies Reviewed: we performed a comprehensive PubMed search to review all published studies related to the molecular regulation of tooth root development and regeneration until August 2022. Articles selected include original research studies and reviews. Results: Epigenetic regulation strongly influences dental tooth root patterning and development. One study highlights how genes such as Ezh2 and Arid1a are crucial components in the development of tooth root furcation patterning. Another study shows that loss of Arid1a ultimately leads to shortened root morphology. Furthermore, researchers are utilizing information about root development and stem cells to find alternative treatments in replacing missing teeth through a stem cell-mediated bioengineered tooth root (bio-root). Practical Implications: Dentistry values preserving natural tooth morphology. Presently, implants are the best treatment for replacing missing teeth, but alternative future treatments might include tissue engineering/bio-root regeneration to restore our dentition.

14.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816297

RESUMO

Fruits and vegetables (F&V) are an indispensable part of a healthy diet. The volatile and nonvolatile compounds present in F&V constitute unique flavor substances. This paper reviews the main flavor substances present in F&V, as well as the biosynthetic pathways and molecular regulation mechanisms of these compounds. A series of compounds introduced include aromatic substances, soluble sugars and organic acids, which constitute the key flavor substances of F&V. Esters, phenols, alcohols, amino acids and terpenes are the main volatile aromatic substances, and nonvolatile substances are represented by amino acids, fatty acids and carbohydrates; The combination of these ingredients is the cause of the sour, sweet, bitter, astringent and spicy taste of these foods. This provides a theoretical basis for the study of the interaction between volatile and nonvolatile substances in F&V, and also provides a research direction for the healthy development of food in the future.

15.
Appl Microbiol Biotechnol ; 106(19-20): 6413-6426, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36114850

RESUMO

Cephalosporins are currently the most widely used antibiotics in clinical practice. The main strain used for the industrial production cephalosporin C (CPC) is Acremonium chrysogenum. CPC has the advantages of possessing a broad antibacterial spectrum and strong antibacterial activity. However, the yield and titer of cephalosporins obtained from A. chrysogenum are much lower than penicillin, which is also a ß-lactam antibiotic produced by Penicillium chrysogenum. Molecular biology research into A. chrysogenum has focused on gene editing technologies, multi-omics research which has provided information on the differences between high- and low-yield strains, and metabolic engineering involving different functional genetic modifications and hierarchical network regulation to understand strain characteristics. Furthermore, optimization of the fermentation process is also reviewed as it provides the optimal environment to realize the full potential of strains. Combining rational design to control the metabolic network, high-throughput screening to improve the efficiency of obtaining high-performance strains, and real-time detection and controlling in the fermentation process will become the focus of future research in A. chrysogenum. This minireview provides a holistic and in-depth analysis of high-yield mechanisms and improves our understanding of the industrial value of A. chrysogenum. KEY POINTS: • Review of the advances in A. chrysogenum characteristics improvement and process optimization • Elucidate the molecular bases of the mechanisms that control cephalosporin C biosynthesis and gene expression in A. chrysogenum • The future development trend of A. chrysogenum to meet industrial needs.


Assuntos
Acremonium , Acremonium/genética , Acremonium/metabolismo , Antibacterianos/metabolismo , Cefalosporinas , Fermentação , Penicilinas
16.
Ecotoxicol Environ Saf ; 244: 114068, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108435

RESUMO

In this study, we exposed adult male crayfish (Procambarus clarkii) to different concentrations of diclofenac (DCF) for 96 h. In the meantime, we investigated the alternations of hepatopancreatic pathology, molecular regulation and intestinal microbiota of P. clarkii exposed to DCF. The results demonstrated DCF led to histological changes including epithelium vacuolization and tubule lumen dilatation in the hepatopancreas. Transcriptome sequencing analysis showed that 642 and 586 genes were differentially expressed in the hepatopancreas of P. clarkii exposed to 1 and 10 mg/L DCF, respectively. DCF could affect the functions of antioxidation, immunity and metabolism of hepatopancreas by inducing the abnormal expressions of immune- and redox-related genes. GO enrichment results demonstrated that 10 mg/L DCF exposure could modulate the processes of molting, amino sugar metabolism, protein hydrolysis and intracellular protein translocation of P. clarkii. Additionally, the abundances of bacterial families including Shewanellaceae, Bacteroidaceae, Vibrionaceae, Erysipelotrichaceae, Aeromonadaceae, Moraxellaceae, etc. in the intestine were significantly changed after DCF exposure, and the disruption of intestinal flora might further cause abnormal intestinal metabolism in P. clarkii. This study provides novel mechanistic insights into the toxic effects of anti-inflammatory drugs on aquatic crustaceans.


Assuntos
Astacoidea , Microbioma Gastrointestinal , Amino Açúcares/metabolismo , Amino Açúcares/farmacologia , Animais , Diclofenaco/metabolismo , Diclofenaco/toxicidade , Água Doce , Hepatopâncreas/metabolismo , Humanos , Masculino , Patologia Molecular
17.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682805

RESUMO

Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.


Assuntos
Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Brassicaceae/metabolismo , Ecótipo , Regulação da Expressão Gênica de Plantas , Proteômica , Estresse Fisiológico , Espectrometria de Massas em Tandem
18.
Entropy (Basel) ; 24(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35626576

RESUMO

One of the key challenges in systems biology and molecular sciences is how to infer regulatory relationships between genes and proteins using high-throughout omics datasets. Although a wide range of methods have been designed to reverse engineer the regulatory networks, recent studies show that the inferred network may depend on the variable order in the dataset. In this work, we develop a new algorithm, called the statistical path-consistency algorithm (SPCA), to solve the problem of the dependence of variable order. This method generates a number of different variable orders using random samples, and then infers a network by using the path-consistent algorithm based on each variable order. We propose measures to determine the edge weights using the corresponding edge weights in the inferred networks, and choose the edges with the largest weights as the putative regulations between genes or proteins. The developed method is rigorously assessed by the six benchmark networks in DREAM challenges, the mitogen-activated protein (MAP) kinase pathway, and a cancer-specific gene regulatory network. The inferred networks are compared with those obtained by using two up-to-date inference methods. The accuracy of the inferred networks shows that the developed method is effective for discovering molecular regulatory systems.

19.
Malays J Med Sci ; 29(6): 6-14, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36818899

RESUMO

During the third week of human pregnancy, an embryo transforms from two germinal disc layers of hypoblast and epiblast to three germinal layers of endoderm, mesoderm and ectoderm. Gastrulation is a complex process that includes cellular mobility, morphogenesis and cell signalling, as well as chemical morphogenic gradients, transcription factors and differential gene expression. During gastrulation, many signalling channels coordinate individual cell actions in precise time and location. These channels control cell proliferation, shape, fate and migration to the correct sites. Subsequently, the anteroposterior (AP), dorsoventral (DV) and left-right (LR) body axes are formed before and during gastrulation via these signalling regulation signals. Hence, the anomalies in gastrulation caused by insults to certain molecular pathways manifest as a wide range of body axes-related disorders. This article outlines the formation of body axes during gastrulation and the anomalies as well as the clinical implications.

20.
Plant Cell Physiol ; 62(4): 564-572, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33508131

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth and development. Low inorganic phosphate (Pi) availability is a limiting factor for plant growth and yield. To cope with a complex and changing environment, plants have evolved elaborate mechanisms for regulating Pi uptake and use. Recently, the molecular mechanisms of plant Pi signaling have become clearer. Plants absorb Pi from the soil through their roots and transfer Pi to various organs or tissues through phosphate transporters, which are precisely controlled at the transcript and protein levels. Here, we summarize recent progress on the molecular regulatory mechanism of phosphate transporters in Arabidopsis and rice, including the characterization of functional transporters, regulation of transcript levels, protein localization and turnover of phosphate transporters. A more in-depth understanding of plant adaptation to a changing Pi environment will facilitate the genetic improvement of plant P efficiency.


Assuntos
Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/genética , Plantas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa