Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 20(29): e2400238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385800

RESUMO

The performance of Stimulated Emission Depletion (STED) microscopy depends critically on the fluorescent probe. Ultrasmall Au nanoclusters (Au NCs) exhibit large Stokes shift, and good stimulated emission response, which are potentially useful for STED imaging. However, Au NCs are polydispersed in size, sensitive to the surrounding environment, and difficult to control surface functional group stoichiometry, which results in reduced density and high heterogeneity in the labeling of biological structures. Here, this limitation is overcome by developing a method to encapsulate ultrasmall Au NCs with DNA cages, which yielded monodispersed, and monofunctionalized Au NCs that are long-term stable. Moreover, the DNA-caging also greatly improved the fluorescence quantum yield and photostability of Au NCs. In STED imaging, the DNA-caged Au NCs yielded ≈40 nm spatial resolution and are able to resolve microtubule line shapes with good labeling density and homogeneity. In contrast, without caging, the Au NCs-DNA conjugates only achieved ≈55 nm resolution and yielded spotted, poorly resolved microtubule structures, due to the presence of aggregates. Overall, a method is developed to achieve precise surface functionalization and greatly improve the monodispersity, stability, as well as optical properties of Au NCs, providing a promising class of fluorescent probes for STED imaging.


Assuntos
DNA , Ouro , Nanopartículas Metálicas , Ouro/química , DNA/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Humanos
2.
Small ; 20(26): e2309035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234137

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.

3.
Nano Lett ; 22(8): 3465-3472, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435694

RESUMO

HgTe colloidal quantum dots (CQDs) are promising absorber systems for infrared detection due to their widely tunable photoresponse in all infrared regions. Up to now, the best-performing HgTe CQD photodetectors have relied on using aggregated CQDs, limiting the device design, uniformity and performance. Herein, we report a ligand-engineered approach that produces well-separated HgTe CQDs. The present strategy first employs strong-binding alkyl thioalcohol ligands to enable the synthesis of well-dispersed HgTe cores, followed by a second growth process and a final postligand modification step enhancing their colloidal stability. We demonstrate highly monodisperse HgTe CQDs in a wide size range, from 4.2 to 15.0 nm with sharp excitonic absorption fully covering short- and midwave infrared regions, together with a record electron mobility of up to 18.4 cm2 V-1 s-1. The photodetectors show a room-temperature detectivity of 3.9 × 1011 jones at a 1.7 µm cutoff absorption edge.

4.
Angew Chem Int Ed Engl ; 62(18): e202219067, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869214

RESUMO

The self-assembly morphologies of subunits are largely governed by thermodynamics, which plays a less important role in dimensional control. Particularly for one-dimensional assemblies from block copolymers (BCPs), the negligible energy difference between short and long ones imposes great challenges in length control. Herein, we report that by incorporating additional polymers to induce in situ nucleation and trigger the subsequent growth, controllable supramolecular polymerization driven by mesogenic ordering effect could be realized from liquid crystalline BCPs. The length of the resultant fibrillar supramolecular polymers (SP) is controlled by tuning the ratio between nucleating and growing components. Depending on the choice of BCPs, the SPs can be homopolymer-like, heterogeneous triblock, and even pentablock copolymer-like. More interestingly, with insoluble BCP as a nucleating component, amphiphilic SPs are fabricated, which can undergo spontaneous hierarchical assembly.

5.
Small ; 18(24): e2200810, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587613

RESUMO

Shell-stabilized gas microbubbles (MB) and nanobubbles (NB) are frequently used for biomedical ultrasound imaging and therapeutic applications. While it is widely recognized that monodisperse bubbles can be more effective in these applications, the efficient formulation of uniform bubbles at high concentrations is difficult to achieve. Here, it is demonstrated that a standard mini-extruder setup, commonly used to make vesicles or liposomes, can be used to quickly and efficiently generate monodisperse NBs with high yield. In this highly reproducible technique, the NBs obtained have an average diameter of 0.16 ± 0.05 µm and concentration of 6.2 ± 1.8 × 1010  NBs mL-1 compared to 0.32 ± 0.1 µm and 3.2 ± 0.7 × 1011  mL-1 for NBs made using mechanical agitation. Parameters affecting the extrusion and NB generation process including the temperature, concentration of the lipid solution, and the number of passages through the extruder are also examined. Moreover, it is demonstrated that extruded NBs show a strong acoustic response in vitro and a strong and persistent US signal enhancement under nonlinear contrast enhanced ultrasound imaging in mice. The extrusion process is a new, efficient, and scalable technique that can be used to easily produce high yield smaller monodispersed nanobubbles.


Assuntos
Diagnóstico por Imagem , Microbolhas , Animais , Meios de Contraste , Diagnóstico por Imagem/métodos , Lipossomos , Camundongos , Ultrassonografia/métodos
6.
Nano Lett ; 21(1): 476-484, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350838

RESUMO

We introduce xanthate-functionalized poly(cyclic imino ethers)s (PCIEs), specifically poly(2-ethyl-2-oxazoline) and poly(2-ethyl-2-oxazine) given their stealth characteristics, as an attractive alternative to conventional thiol-based ligands for the synthesis of highly monodisperse and fluorescent gold nanoclusters (AuNCs). The xanthate in the PCIEs interacts with Au ions, acting as a well-controlled template for the direct formation of PCIE-AuNCs. This method yields red-emitting AuNCs with a narrow emission peak (λem = 645 nm), good quantum yield (4.3-4.8%), long fluorescence decay time (∼722-844 ns), and unprecedented product yield (>98%). The PCIE-AuNCs exhibit long-term colloidal stability, biocompatibility, and antifouling properties, enabling a prolonged blood circulation, lower nonspecific accumulation in major organs, and better renal clearance when compared with AuNCs without polymer coating. The advances made here in the synthesis of metal nanoclusters using xanthate-functionalized PCIEs could propel the production of highly monodisperse, biocompatible, and renally clearable nanoprobes in large-scale for different theranostic applications.

7.
Adv Exp Med Biol ; 1009: 31-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218552

RESUMO

The success of a SAXS experiment for structural investigations depends on two precise measurements, the sample and the buffer background. Buffer matching between the sample and background can be achieved using dialysis methods but in biological SAXS of monodisperse systems, sample preparation is routinely being performed with size exclusion chromatography (SEC). SEC is the most reliable method for SAXS sample preparation as the method not only purifies the sample for SAXS but also almost guarantees ideal buffer matching. Here, I will highlight the use of SEC for SAXS sample preparation and demonstrate using example proteins that SEC purification does not always provide for ideal samples. Scrutiny of the SEC elution peak using quasi-elastic and multi-angle light scattering techniques can reveal hidden features (heterogeneity) of the sample that should be considered during SAXS data analysis. In some cases, sample heterogeneity can be controlled using a small molecule additive and I outline a simple additive screening method for sample preparation.


Assuntos
Cromatografia em Gel/métodos , Proteínas/ultraestrutura , Espalhamento a Baixo Ângulo , Manejo de Espécimes/métodos , Síncrotrons/instrumentação , Difração de Raios X/normas , Soluções Tampão , Cromatografia em Gel/instrumentação , Excipientes/química , Humanos , Fosfatos/química , Agregados Proteicos , Conformação Proteica , Proteínas/química , Sacarose/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos
8.
Adv Exp Med Biol ; 1009: 183-199, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218560

RESUMO

A monodispersed and ideal solution is a central (unique?) requirement of SAXS to allow one to extract structural information from the recorded pattern. On-line Size Exclusion Chromatography (SEC) marked a major breakthrough, separating particles present in solution according to their size. Identical frames under an elution peak can be averaged and further processed free from contamination. However, this is not always straightforward, separation is often incomplete and software have been developed to deconvolve the contributions from the different species (molecules or oligomeric forms) within the sample. In this chapter, we present the general workflow of a SEC-SAXS experiment. We present recent instrumental and data analysis improvements that have improved the quality of recorded data, extended its potential and turn it into a mainstream approach. We describe into some details two specific applications of SEC-SAXS that provide more than just separating associated forms from the particle of interest.


Assuntos
Cromatografia em Gel/métodos , Proteínas/ultraestrutura , Espalhamento a Baixo Ângulo , Manejo de Espécimes/métodos , Síncrotrons/instrumentação , Difração de Raios X/normas , Soluções Tampão , Cromatografia em Gel/instrumentação , Excipientes/química , HEPES/química , Humanos , Fosfatos/química , Agregados Proteicos , Conformação Proteica , Proteínas/química , Software , Difração de Raios X/instrumentação , Difração de Raios X/métodos
9.
Angew Chem Int Ed Engl ; 56(38): 11475-11479, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28719109

RESUMO

The largest Ln-Fe metal cluster [Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]⋅(CH3 COO)2 (CH3 CN)2 ⋅(H2 O)20 (1) and the core-shell monodisperse metal cluster of 1 a@SiO2 (1 a=[Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]2+ ) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a@SiO2 reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe3+ ions.

10.
Nano Lett ; 15(2): 1281-7, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25580617

RESUMO

Alloy nanoparticles with atomic monodispersity is of importance for some fundamental research (e.g., the investigation of active sites). However, the controlled preparation of alloy nanoparticles with atomic monodispersity has long been a major challenge. Herein, for the first time a unique method, antigalvanic reduction (AGR), is introduced to synthesize atomically monodisperse Au25Ag2(SC2H4Ph)18 in high yield (89%) within 2 min. Interestingly, the two silver atoms in Au25Ag2(SC2H4Ph)18 do not replace the gold atoms in the precursor particle Au25(SC2H4Ph)18 but collocate on Au25, which was supported by experimental and calculated results. Also, the two silver atoms are active to play roles in stabilizing the alloy nanoparticle, triggering the nanoparticle fluorescence and catalyzing the hydrolysis of 1,3-diphenylprop-2-ynyl acetate.

11.
J Microencapsul ; 32(6): 570-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26190217

RESUMO

Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.


Assuntos
Ácido Ascórbico/química , Emulsões/química , Microesferas , Água/química , Alginatos/química , Composição de Medicamentos/métodos , Emulsificantes , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Interações Hidrofóbicas e Hidrofílicas , Íons , Sulfato de Magnésio/química , Pressão Osmótica , Tamanho da Partícula , Pressão , Sódio/química , Viscosidade
12.
Protein Expr Purif ; 97: 50-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24583180

RESUMO

ABCA4 is a member of the A subfamily of ATP-binding cassette transporters that consists of large integral membrane proteins implicated in inherited human diseases. ABCA4 assists in the clearance of N-retinylidene-phosphatidylethanolamine, a potentially toxic by-product of the visual cycle formed in photoreceptor cells during light perception. Structural and functional studies of this protein have been hindered by its large size, membrane association, and domain complexity. Although mammalian, insect and bacterial systems have been used for expression of ABCA4 and its individual domains, the structural relevance of resulting proteins to the native transporter has yet to be established. We produced soluble domains of ABCA4 in Escherichia coli and Saccharomyces cerevisiae and the full-length transporter in HEK293 cells. Electron microscopy and size exclusion chromatography were used to assess the conformational homogeneity and structure of these proteins. We found that isolated ABCA4 domains formed large, heterogeneous oligomers cross-linked with non-specific disulphide bonds. Incomplete folding of cytoplasmic domain 2 was proposed based on fluorescence spectroscopy results. In contrast, full-length human ABCA4 produced in mammalian cells was found structurally equivalent to the native protein obtained from bovine photoreceptors. These findings offer recombinantly expressed full-length ABCA4 as an appropriate object for future detailed structural and functional characterization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Clonagem Molecular , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Sequência de Aminoácidos , Animais , Bovinos , Cisteína/química , Dissulfetos/química , Escherichia coli/genética , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Redobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Saccharomyces cerevisiae/genética
13.
Angew Chem Int Ed Engl ; 53(25): 6411-3, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24828235

RESUMO

Polydispersity in polymers hinders fundamental understanding of their structure-property relationships and prevents them from being used in fields like medicine, where polydispersity affects biological activity. The polydispersity of relatively short-chain poly(ethylene oxide) [(CH2CH2O2)n; PEO] affects its biological activity, for example, the toxicity and efficacy of PEOylated drugs. As a result, there have been intensive efforts to reduce the dispersity as much as possible (truly monodispersed materials are not possible). Here we report a synthetic procedure that leads to an unprecedented low level of dispersity. We also show for the first time that it is possible to discriminate between PEOs differing in only 1 ethylene oxide (EO) unit, essential in order to verify the exceptionally low levels of dispersity achieved here. It is anticipated that the synthesis of poly(ethylene oxide) approaching monodispersity will be of value in many fields where the applications are sensitive to the distribution of molar mass.

14.
J Colloid Interface Sci ; 642: 612-622, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028168

RESUMO

The agglomeration of metal-organic frameworks (MOFs) has long been a problem, and achieving stable monodispersity in water remains a great challenge. This paper reports a universal strategy that functionalizes MOFs by using an endogenous bioenzyme namely glucose oxidase (GOx), to achieve stable water monodispersity, and integrates it as a highly efficient nanoplatform for cancer synergistic therapy. Phenolic hydroxyl groups in GOx chain confers robust coordination interactions with MOFs, which not only endows stable monodispersion in water, but also provides many reactive sites for further modification. Silver nanoparticles are uniformly deposited onto MOFs@GOx to achieve high conversion efficiency from near-infrared light to heat, resulting in an effective starvation and photothermal synergistic therapy model. In vitro and in vivo experiments confirm excellent therapeutic effect at very low doses without using any chemotherapeutics. In addition, the nanoplatform generates large amounts of reactive oxygen species, induces heavy cell apoptosis, and demonstrates the first experimental example to effectively inhibit cancer migration. Our universal strategy enables stable monodispersity of various MOFs via GOx functionalization and establishes a non-invasive platform for efficient cancer synergistic therapy.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Nanopartículas/química , Prata/farmacologia , Neoplasias/terapia , Apoptose , Glucose Oxidase , Linhagem Celular Tumoral
15.
Polymers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616403

RESUMO

In this paper, we report a microcapsule embedded PNIPAN in P (TPC-EDA) shell and it can be regarded as an interpenetrating polymer network (IPN) structure, which can accelerate the penetration of oily substances at a certain temperature, and the microcapsules are highly monodisperse and dimensionally reproducible. The proposed microcapsules were fabricated in a three-step process. The first step was the optimization of the conditions for preparing oil in water emulsions by microfluidic device. In the second step, monodisperse polyethylene terephthaloyl-ethylenediamine (P(TPC-EDA)) microcapsules were prepared by interfacial polymerization. In the third step, the final microcapsules with poly(N-isopropylacrylamide) (PNIPAM)-based interpenetrating polymer network (IPN) structure in P(TPC-EDA) shells were finished by free radical polymerization. We conducted careful data analysis on the size of the emulsion prepared by microfluidic technology and used a very intuitive functional relationship to show the production characteristics of microfluidics, which is rarely seen in other literatures. The results show that when the IPN-structured system swelled for 6 h, the adsorption capacity of kerosene was the largest, which was promising for water-oil separation or extraction and separation of hydrophobic drugs. Because we used microfluidic technology, the products obtained have good monodispersity and are expected to be produced in large quantities in industry.

16.
Methods Enzymol ; 677: 221-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410950

RESUMO

A monodispersed and ideal solution is a key requirement of BioSAXS to allow one to extract structural information from the recorded pattern. On-line size exclusion chromatography (SEC) marked a major breakthrough, separating particles present in solution according to their size. Scattering curves with identical shape under an elution peak can be averaged and further processed free from contamination. However, this is not always straightforward, separation is often incomplete. Software have been developed to deconvolve the contributions from the different species (molecules or oligomeric forms) within the sample. In this chapter, we present the general workflow of a SEC-SAXS experiment. We present recent instrumental and data analysis developments that have improved the quality of recorded data, extended the potential of SEC-SAXS and turned it into a mainstream approach. We report a comparative analysis of two macromolecular systems using various deconvolution approaches that have been developed over the last years. Parallel analysis appears to be the best cross-validation method to assess the reliability of the reconstructed isolated species patterns that can safely be used as a support for meaningful molecular modeling.


Assuntos
Software , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Difração de Raios X , Cromatografia em Gel
17.
Food Chem ; 346: 128879, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406454

RESUMO

Ferritin can be widely used as functional nanomaterial. But the physiological activity of ferritin can be damaged under excessive temperatures, which affect the self-assembly property. In this study, point mutation was produced in Asp120 to Gly120 of ferritin amino acid sequence and the heat resistance was improved significantly. The thermal denaturation temperature of mutated ferritin is 89.17 °C and has increased by 13 °C more than the wild-type oyster ferritin. The effect of thermal treatment on the denaturation, aggregation state, particle size and the structure of ferritin was not changed before 90 °C. The computational modeling and analysis indicated that mutated ferritin promotes the overall structural stability assembly via decreasing the interaction energies of 62 percent energies in 3-fold interface. Improving the thermal stability of oyster ferritin by point mutation enhances its applications as a food ingredient.


Assuntos
Crassostrea/metabolismo , Ferritinas/metabolismo , Temperatura Alta , Mutação Puntual , Alimentos Marinhos/análise , Sequência de Aminoácidos , Animais , Crassostrea/química
18.
J Colloid Interface Sci ; 599: 586-594, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971567

RESUMO

Common strategies to synthesize graphitic porous carbon nanospheres suffer from energy consumption, exorbitant cost and harsh condition, and lead to closed pore and polydisperse particles. The successful manipulation of adjustable graphitic skeleton, developed porosity, good monodispersity and dispersity of carbon nanospheres is essential to meet their structural varieties and practical applications. Herein, an outside-in catalytic graphitization method is reported to synthesize carbon nanospheres with abovementioned properties, which involves interfacial assembly between layered double hydroxides nanosheets and polymer nanospheres, in-situ generation of nickel nanoparticles, and outside-in catalytic graphitization. The unusual phenomenon is that the in-situ generated nickel nanoparticles are preferentially oriented to the carbon side rather than to the free open space. The interface reactions between nickel nanoparticles and amorphous carbons drive continuous etching of carbon species to form graphitic structure in the interior of spheres. The graphitic structure can be tuned by changing effective charge ratio and pyrolysis conditions and obtained carbon nanospheres possessed good dispersibility in water and ethanol. Moreover, such carbon nanospheres exhibited good performance when used as anodes in lithium-ion batteries. These findings may pave new ways for synthesizing multifarious carbon nanomaterials with adjustable graphitic skeleton, developed porosity, good monodispersity and dispersibility for various applications.

19.
J Colloid Interface Sci ; 581(Pt B): 586-594, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814186

RESUMO

Stable dispersion of TiO2 particle is very desirable for its practical applications in various fields. It is a big challenge to stabilize pigment TiO2 with relatively large size (200-300 nm) in low viscosity (~10 cP) systems. In the current work, we introduced a general strategy using a hydrophobic-hydrophilic structure to achieve single-dispersed TiO2 particles with long storage stability in low viscosity systems. The modified TiO2 particles (~250 nm) can be re-dispersed into water/glycol ethers mixture to form single dispersed suspension without any additives. Our study shows that the dispersion can be stable at least 60 days at room temperature and the rheological property is similar to the Newtonian fluids showing an extremely low yield stress at relatively high solid concentration. This work is expected to introduce a new strategy to improve the dispersion stability of the large size nanoparticles in low viscosity systems.

20.
Adv Mater ; 33(23): e2100820, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33914372

RESUMO

Ultrafine nanoparticles with organic-inorganic hybridization have essential roles in myriad applications. Over the past three decades, although various efforts on the formation of organic or inorganic ultrasmall nanoparticles have been made, ultrafine organic-inorganic hybrid nanoparticles have scarcely been achieved. Herein, a family of ultrasmall hybrid nanoparticles with a monodisperse, uniform size is synthesized by a facile thermo-kinetics-mediated copolymer monomicelle approach. These thermo-kinetics-mediated monomicelles with amphiphilic ABC triblock copolymers are structurally robust due to their solidified polystyrene core, endowing them with ultrahigh thermodynamic stability, which is difficult to achieve using Pluronic surfactant-based micelles (e.g., F127). This great stability combined with a core-shell-corona structure makes the monodispersed monomicelles a robust template for the precise synthesis of ultrasmall hybrid nanoparticles with a highly uniform size. As a demonstration, the obtained micelles/SiO2 hybrid nanoparticles display ultrafine sizes, excellent uniformity, monodispersity, and tunable structural parameters (diameters: 24-47 nm and thin shell thickness: 2.0-4.0 nm). Notably, this approach is universal for creating a variety of multifunctional ultrasmall hybrid nanostructures, involving organic/organic micelle/polymers (polydopamine) nanoparticles, organic/inorganic micelle/metal oxides (ZnO, TiO2 , Fe2 O3 ), micelle/hydroxides (Co(OH)2 ), micelle/noble metals (Ag), and micelle/TiO2 /SiO2 hybrid composites. As a proof of concept, the ultrasmall micelle/SiO2 hybrid nanoparticles demonstrate superior toughness as biomimetic materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa