Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 1410-1419, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38158605

RESUMO

Catalytic oxidation has been considered an effective technique for volatile organic compound degradation. Development of metal foam-based monolithic catalysts coupling electromagnetic induction heating (EMIH) with efficiency and low energy is critical yet challenging in industrial applications. Herein, a Mn18.2-NF monolithic catalyst prepared by electrodeposition exhibited superior toluene catalytic activity under EMIH conditions, and the temperature of 90% toluene conversion decreased by 89 °C compared to that in resistance furnace heating. Relevant characterizations proved that the skin effect induced by EMIH encouraged activation of gaseous oxygen, leading to superior low-temperature redox properties of Mn18.2-NF under the EMIH condition. In situ Fourier transform infrared spectroscopy results showed that skin effect-induced activation of oxidizing species further accelerated the conversion of intermediates. As a result, the Mn18.2-NF monolithic catalyst under EMIH demonstrated remarkable performance for the toluene oxidation, surpassing the conventional nonprecious metal catalyst and other reported monolithic catalysts.


Assuntos
Óxidos , Tolueno , Tolueno/química , Óxidos/química , Oxirredução , Temperatura , Catálise
2.
Environ Sci Technol ; 58(33): 14906-14917, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39104092

RESUMO

Developing robust metal-based monolithic catalysts with efficient oxygen activation capacity is crucial for thermal catalytic treatment of volatile organic compound (VOC) pollution. Two-dimensional (2D) metal oxides are alternative thermal catalysts, but their traditional loading strategies on carriers still face challenges in practical applications. Herein, we propose a novel in situ molten salt-loading strategy that synchronously enables the construction of 2D Co3O4 and its growth on Fe foam for the first time to yield a unique monolithic catalyst named Co3O4/Fe-S. Compared to the Co3O4 nanocube-loaded Fe foam, Co3O4/Fe-S exhibits a significantly improved catalytic performance with a temperature reduction of 44 °C at 90% toluene conversion. Aberration-corrected scanning transmission electron microscopy and theoretical calculation suggest that Co3O4/Fe-S possesses abundant 2D Co3O4/Fe3O4 composite interfaces, which promote the construction of active sites (oxygen vacancy and Co3+) to boost oxygen activation and toluene chemisorption, thereby accelerating the transformation of reaction intermediates through Langmuir-Hinshelwood (L-H) and Mars-van Krevelen (MvK) mechanisms. Moreover, the growth mechanism reveals that 2D Co3O4/Fe3O4 composite interfaces are generated in situ in molten salt, inducing the growth of 2D Co3O4 onto the surface lattice of 2D Fe3O4. This study provides new insights into enhancing oxygen activation and opens an unprecedented avenue in preparing efficient monolithic catalysts for VOC oxidation.


Assuntos
Oxirredução , Oxigênio , Tolueno , Catálise , Tolueno/química , Oxigênio/química , Compostos Orgânicos Voláteis/química , Cobalto/química , Óxidos/química
3.
Chembiochem ; 24(10): e202300114, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37043342

RESUMO

Exhausted emission of carbon dioxide (CO2 ) from ships or offshore platforms has become one of the major contributors to global carbon emissions. Enzymes such as carbonic anhydrase (CA) have been widely used for CO2 mineralization because of their high catalytic rate. However, CA in seawater is easy to inactivate and difficult to reuse. Immobilization would be a feasible solution to address the stability issue, which, however, may cause an increase of internal diffusion resistance and reduced catalytic activity. In this regard, design of high-performance biocatalysts for acquiring high catalytic activity and stability of CA is highly desirable. Herein, a monolithic catalyst of Filler-CA@Lys-HOF-1 (FCLH) was prepared by chemical sorption of CA on the surface of the Filler followed by the coating of Lys-HOF-1. The highest catalytic activity of FCLH was obtained by regulating the amount of HOF-1 monomer added. Due to the protection of Lys-HOF-1, the FCLH showed good tolerance against acidity and salinity, which could retain about 80.2 % of the original activity after 9 h incubation in simulated seawater. The catalytic activity of FCLH could retain 85.4 % of the initial activity after 10 cycles. Hopefully, our study can provide a promising biocatalyst for CO2 mineralization, which may drive down carbon emissions when used for CO2 capture and conversion on offshore platforms.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Enzimas Imobilizadas , Catálise , Hidrogênio
4.
Environ Sci Technol ; 57(24): 9096-9104, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289934

RESUMO

Catalytic combustion has been known to be an effective technique in volatile organic compound (VOC) abatement. Developing monolithic catalysts with high activity at low temperatures is vital yet challenging in industrial applications. Herein, monolithic MnO2-Ov/CF catalysts were fabricated via the in situ growth of K2CuFe(CN)6 (CuFePBA, a family of metal-organic frames) over copper foam (CF) followed by a redox-etching route. The as-synthesized monolith MnO2-Ov-0.04/CF catalyst displays a superior low-temperature activity (T90% = 215 °C) and robust durability for toluene elimination even in the presence of 5 vol % water. Experimental results reveal that the CuFePBA template not only guides the in situ growth of δ-MnO2 with high loading over CF but also acts as a source of dopant to create more oxygen vacancies and weaken the strength of the Mn-O bond, which considerably improves the oxygen activation ability of δ-MnO2 and consequently boosts the low-temperature catalytic activity of the monolith MnO2-Ov-0.04/CF toward toluene oxidation. In addition, the reaction intermediate and proposed mechanism in the MnO2-Ov-0.04/CF mediated catalytic oxidation process were investigated. This study provides new insights into the development of highly active monolithic catalysts for the low-temperature oxidation of VOCs.


Assuntos
Cobre , Óxidos , Óxidos/química , Oxigênio , Compostos de Manganês/química , Tolueno/química , Oxirredução , Catálise
5.
J Environ Manage ; 336: 117688, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907063

RESUMO

Producing a low-cost catalyst by a low-cost method is one of the hottest topics in the field of catalytic oxidization of volatile organic compounds (VOCs). In this work, a catalyst formula with a low-energy requirement was optimized in the powdered state, and verified in the monolithic state. An effective MnCu catalyst was synthesized at a temperature as low as 200 °C. Removals were all bigger than 88% for toluene, ethyl acetate, hexane, formaldehyde, and cyclohexanone at a low temperature of 240 °C. The MnCu catalyst was then loaded on a honeycomb cordierite, which was also effective for toluene removal at 240 °C. After characterizations, active phases were Mn3O4/CuMn2O4 in both the powdered and monolithic catalysts. The enhanced activity was attributed to balanced distributions of low-valence Mn and Cu, as well as abundant surface oxygen vacancies. The obtained catalyst is produced by low energy and effective at low temperature, which suggests a perspective application.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Oxirredução , Temperatura , Catálise , Tolueno
6.
J Environ Sci (China) ; 126: 308-320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503759

RESUMO

Energy-saving and efficient monolithic catalysts are hotspots of catalytic purification of industrial gaseous pollutants. Here, we have developed an electrothermal catalytic mode, in which the ignition temperature required for the reaction is provided by Joule heat generated when the current flows through the catalyst. In this paper, Mn/NiAl/NF, Mn/NiFe/NF and Mn/NF metal-based monolithic catalysts were prepared using nickel foam (NF) as the carrier for thermal and electrothermal catalysis of n-heptane. The results indicated that Mn-based monolithic catalysts exhibit high activity in thermal and electrothermal catalysis. Mn/NiFe/NF achieve conversion of n-heptane more than 99% in electrothermal catalysis under a direct-current (DC) power of 6 W, and energy-saving is 54% compared with thermal catalysis. In addition, the results indicated that the introduction of NiAl (or NiFe) greatly enhanced the catalytic activity of Mn/NF, which attributed to the higher specific surface area, Mn3+/Mn4+, Ni3+/Ni2+, adsorbed oxygen species (Oads)/lattice oxygen species (Olatt), redox performance of the catalyst. Electrothermal catalytic activity was significantly higher than thermal catalytic activity before complete conversion, which may be related to electronic effects. Besides, Mn/NiFe/NF has good cyclic and long-term stability in electrothermal catalysis. This paper provided a theoretical basis for applying electrothermal catalysis in the field of VOCs elimination.


Assuntos
Níquel , Óxidos , Compostos de Manganês , Oxigênio
7.
Environ Sci Technol ; 56(3): 1905-1916, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856794

RESUMO

The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.

8.
J Environ Sci (China) ; 112: 231-243, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955207

RESUMO

A series of Co-Mn mixed oxide catalyst supported on a cordierite monolith was facilely synthesized by ultrasonic impregnation. Its catalytic performance was evaluated in the combustion of toluene, ethyl acetate and its mixture. It was observed that with incorporating Mn into Co3O4, the formation of solid solution with spinel structure could significantly improve the catalytic activity of pure phase Co3O4. And the monolithic Co0.67Mn0.33Ox catalyst showed the best catalytic performance in the catalytic oxidation of toluene and ethyl acetate which could be completely oxidized at 220 and 180°C respectively under the reaction velocity (WHSV) about 45,000 mL/(g•hr) and pollutant concentration of 500 ppmV. The total conversion temperature of the VOCs mixture was at 230°C (500 ppmV toluene and 500 ppmV ethyl acetate) and determined by the temperature at which the most difficult molecule was oxidized. The excellent catalytic performance of monolithic Co0.67Mn0.33Ox was attributed to the higher content of Mn3+, Co3+, surface adsorbed oxygen and better redox ability. The prepared catalyst showed the good mechanical stability, reaction stability, and good adaptability to different reaction conditions.


Assuntos
Óxidos , Catálise , Cerâmica , Cobalto , Oxirredução
9.
Ecotoxicol Environ Saf ; 220: 112381, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091184

RESUMO

Developing monolithic carbon-based catalyst with low cost, easy separation and high performance to degrade pollutants via PMS activation is crucial. In this work, a series of novel monolithic Me-CA catalysts based on biomass derived carbon aerogel were prepared by hydrothermal method using waste watermelon peel as raw material. Co-CA catalyst showed excellent performance to activate PMS for 2, 4-DCP degradation in different temperature and different water matrices. Different pollutants, such as ciprofloxacin (CIP), bisphenol A (BPA), and 2, 4-dichlorophenoxyacetic acid (2, 4-D) could also be removed in the Co-CA/PMS system. As expected, Co-CA could be easily separated from degraded solution, and show high stability and reusability for PMS activation with a lower cobalt leaching. Based on the results of the quenching tests, electron paramagnetic resonance (EPR) spectra, Chronoamperometric test (i-t curves) and electro-chemical impedance spectroscopy (EIS), the PMS activation mechanism was proposed. The phytotoxicity assessment determined by germination situation of mung bean indicated that PMS activation could eliminate the hazards of 2, 4-D. Therefore, this study provides a low cost, efficient and environmental-friendly monolithic biomass carbon aerogel catalyst for different pollutants degradation, which further advances monolithic catalyst for practical wastewater treatment.


Assuntos
Carbono/química , Cobalto/química , Recuperação e Remediação Ambiental/métodos , Peróxidos/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidade , Biomassa , Catálise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Eliminação de Resíduos , Vigna/efeitos dos fármacos
10.
J Environ Manage ; 299: 113567, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419728

RESUMO

Electroplating sludge had a high content of heavy metals and usually lacked high-value-added utilization. In this work, Cu-containing sludge was used to synthesize a spinel catalyst, which was applied in catalytic oxidization of toluene. As a result, the sludge-derived spinel removed 50% of toluene (1000 ppm, 9600 h-1) at 280 °C. In comparison, a reagent-synthesized spinel with a similar component removed 50% of pollutant at 294 °C. The sludge-derived spinel also showed a stable performance for over 50 h at 370 °C. Even when the initial concentration was increased to 5000 ppm, or the gas hourly space velocity was increased to 40,000 h-1, the temperature for 50% removal was only increased to 303 °C. According to characterizations, surface oxygens of the sludge-derived spinel were more active than those in the reagent-synthesized one. Besides, the former had more active surface oxygens (207.9 µmol/g) than the latter (183.1 µmol/g). Furthermore, the sludge-derived spinel was coated on a monolithic honeycomb, which were also effective in catalytic oxidization of toluene. The main results of this work were in favor of high-value-added utilization of hazardous solid waste and promoting its real industry application.


Assuntos
Esgotos , Compostos Orgânicos Voláteis , Catálise , Galvanoplastia , Reciclagem
11.
J Environ Sci (China) ; 96: 194-203, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819694

RESUMO

In this paper, KMnO4 was used to pre-treat Co3Fe-layered double hydroxides (LDH) precursor to prepare MnO2 decorated Co3Fe1Ox catalyst. The toluene oxidation performance of the catalyst was investigated systematically. The optimized 0.1MnCF-LDO catalyst exhibited the best catalytic performance, and the temperatures of 50% and 90% toluene conversion (T50 and T90) were 218 and 243°C, respectively. The apparent activation energy (Ea) was 31.6 kJ/mol. The characterization results showed that the pre-redox reaction by KMnO4 could increase the specific surface area, Co3+ species amount and oxygen defect concentration of the catalyst, which are the main reason of the improved toluene catalytic activity. Besides, this method was also applied to enhance toluene oxidation of iron mesh based monolithic catalyst. The 0.1MnCF-LDO/Iron mesh (IM) catalyst showed a 90% toluene conversion at around 316°C which was much lower than that of without MnO2 addition (359°C). In addition, the water resistant of all the catalysts was studied as well, all the samples showed relatively good water resistance. The toluene conversion still remained to be over >80% even in the presence of 10 vol.% water vapor.


Assuntos
Compostos de Manganês , Óxidos , Catálise , Oxirredução , Tolueno
12.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591438

RESUMO

The intermetallic PtBi/MgO/Mg monolithic catalyst was first prepared using non-equilibrium plasma electrolytic oxidation (PEO) technology. Spherical aberration-corrected transmission electron microscope (ACTEM) observation confirms the successful synthesis of the PtBi intermetallic structure. The efficiency of PtBi/Mg/MgO catalysts in catalyzing the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 was demonstrated. The activity factor for the catalyst is 31.8 s-1 g-1, which is much higher than reported values. In addition, the resultant catalyst also exhibits excellent catalytic activity in the organic pollutant reaction of p-nitrobenzoic acid (p-NBA) and methyl orange (MO). Moreover, benefiting from ordered atomic structures and the half-embedded PtBi nanoparticles (NPs), the catalyst demonstrates excellent stability and reproducibility in the degradation of 4-NP. This study provides an example of a simple method for the preparation of intermetallic structures as catalysts for organic pollutant degradation.

13.
J Colloid Interface Sci ; 643: 137-150, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37058889

RESUMO

This study reports a simple method for anchoring dispersed Co nanoparticles on SBA-16 mesoporous molecular sieve coating grown on the 3D-printed ceramic monolith (i.e., Co@SBA-16/ceramic). The monolithic ceramic carriers with a designable versatile geometric channel could improve the fluid flow and mass transfer but exhibited a smaller surface area and porosity. The SBA-16 mesoporous molecular sieve coating was loaded onto the surface of the monolithic carriers using a simple hydrothermal crystallization strategy, which can increase the surface area of the monolithic carriers and facilitate the loading of active metal sites. In contrast to the conventional impregnation loading method (Co-AG@SBA-16/ceramic), dispersed Co3O4 nanoparticles were obtained by directly introducing Co salts into the as-made SBA-16 coating (containing a template), accompanied by conversion of the Co precursor and removal of the template after calcination. These promoted catalysts were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller theory, and X-ray photoelectron spectroscopy. The developed Co@SBA-16/ceramic catalysts exhibited excellent catalytic performance for the continuous removal of levofloxacin (LVF) in fixed bed reactors. Co/MC@NC-900 catalyst exhibited a ∼ 78% degradation efficiency in 180 min compared to that of Co-AG@SBA-16/ceramic (17%) and Co/ceramic (0.7%). The improved catalytic activity and reusability of Co@SBA-16/ceramic was because of the better dispersion of the active site within the molecular sieve coating. Co@SBA-16/ceramic-1 exhibits much better catalytic activity, reusability and long-term stability than Co-AG@SBA-16/ceramic. After a 720 min continuous reaction, the LVF removal efficiency of Co@SBA-16/ceramic-1 in a 2 cm fixed-bed reactor was stable at 55%. Using chemical quenching experiments, electron paramagnetic resonance spectroscopy, and liquid chromatography-mass spectrometry, the possible LVF degradation mechanism and degradation pathways were proposed. This study provides novel PMS monolithic catalysts for the continuous and efficient degradation of organic pollutants.

14.
Water Res ; 235: 119860, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934537

RESUMO

An Fe-based catalyst was prepared by oxidising waste Fe shavings directly in a solution. In engineering applications, Fe shavings were compressed and modified to form Fe-based monolithic catalyst packing. Both of which exhibited excellent catalytic activity in catalytic ozonation industrial wastewater after biochemical treatment. Fe-based monolithic catalyst packing has irregular channels, large porosity, small pore diameter, and the effective specific surface area (SSA) up to 3500 m2/m3, these characteristics are conducive to mass transfer, and promote the effective utilisation of •OH in the catalyst "action zone". A tower reactor (<3000 m3/d) and reinforced concrete construction reactor (>5000 m3/d) were designed according to the wastewater flow. Regression analysis showed that hydraulic residence time (HRT) and O3/CODin are important parameters in engineering design and operation. In addition, strategies for the application of Fe-based monolithic catalyst packing to wastewater with high salinity and high inorganic carbon concentration have been proposed. Fe-based monolithic catalyst packing catalytic ozonation is a relatively cost-effective and eco-friendly process with extremely broad application prospects in the advanced treatment of industrial wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro/análise , Poluentes Químicos da Água/análise , Catálise
15.
ACS Appl Mater Interfaces ; 14(19): 22170-22185, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35507642

RESUMO

Here, we report a novel 3D printed layered ordered mesoporous template that can encapsulate active Co-MOFs species in a confined way to achieve the goal of monolithic catalyst. The monolithic OM-Co3O4@SiO2-S catalyst can maintain a macroscopic porous layered structure and a microscopic ordered mesoporous structure. This monolithic OM-Co3O4@SiO2-S catalyst has excellent catalytic performance (T90 = 236 °C), water resistance, and thermal stability in the catalytic combustion of toluene. The catalytic performance of the monolithic OM-Co3O4@SiO2-S catalyst is much better than that of many monolithic catalysts reported in the former. Among them, the introduction of binder aluminum phosphate (AP) can effectively enhance the rheological properties of the printing ink, achieve the purpose of ink writing monolithic layered porous material, enrich the acidic point of the monolithic catalyst, and increase the number of reactive oxygen species. This work reveals a novel monolithic catalyst forming strategy that can combine the advantages of ordered mesoporous materials with active species to form macro-layered porous materials and provide ideas and an experimental basis for the elimination of VOCs in industrial applications.

16.
Environ Sci Pollut Res Int ; 29(56): 85202-85210, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35794319

RESUMO

In this work, monolithic catalysts with single coating Ce0.75Zr0.25O2, Al2O3 and composite coating Ce0.75Zr0.25O2-Al2O3 were prepared by PMMA hard template-excessive impregnation method with 3DOM La0.7Ce0.3CoO3 as the active component and cordierite as the carrier, and characterized by SEM, XRD, BET, H2-TPR, and XPS, and the catalytic performance for toluene was tested. The results showed that the active components of 3DOM La0.7Ce0.3CoO3/Ce0.75Zr0.25O2-Al2O3/cordierite catalyst were highly dispersed, forming a complete macroporous structure with the largest specific surface area (10.57 m2·g-1), high surface adsorbed oxygen concentration, and good low-temperature reducibility. Its catalytic activity (T50% = 103℃, T90% = 218℃) for toluene was obviously better than the others. According to the comprehensive analysis, the improvement of the performance of the catalyst may benefit from the excellent physicochemical properties and the synergistic effect between Ce0.75Zr0.25O2-Al2O3 composite coating and active components.

17.
Environ Sci Pollut Res Int ; 29(49): 73935-73945, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35643995

RESUMO

In this paper, we prepared a series of Ce1-xTixO2 (x = 0-0.20) nanorods by hydrothermal method, which were used to construct the PdCu/Ce1-xTixO2 catalysts. The Ce1-xTixO2 and PdCu/Ce1-xTixO2 samples were characterized by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometer (ICP-OES), etc. Catalytic activity, stability, and repeatability of the catalysts for methanol oxidation were investigated. The results show that doping a proper amount of titanium could strengthen the interaction between Ce1-xTixO2 support and PdCu nanoalloy, thus increasing the oxygen vacancy concentration and promoting Pd species with a higher oxidation state. These modified properties are beneficial for the deep oxidation of methanol. The light-off temperature (T50) and full-conversion temperature (T90) of methanol over the PdCu/CeO2 catalyst are 108 °C and 159 °C, respectively. The greatest activity improvement is found for PdCu/Ce0.9Ti0.1O2, which shows the lowest T50 of 88 °C and T90 of 138 °C. Furthermore, neither PdCu/CeO2 nor the modified PdCu/CeO2 catalyst produces by-products and exhibit excellent stability and repeatability throughout the whole test period. This study provides a reference for in-depth understanding and designing of efficient and stable CeO2-based oxidation catalysts.


Assuntos
Cério , Metanol , Catálise , Cério/química , Oxigênio/química , Titânio/química
18.
Environ Sci Pollut Res Int ; 28(28): 37142-37157, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33709317

RESUMO

In order to explore a superior washcoat material to give full play to the catalytic activity of perovskite active components on the monolithic catalysts, three novel types of LaCoO3/washcoat/cordierite monolith catalysts were prepared by a facile two-step procedure which employed the cordierite honeycomb ceramic as the monolith substrate, the nano-oxides (ZrO2, ɤ-Al2O3, TiO2) as the washcoat, and the perovskite of LaCoO3 as the active components. The blank cordierite, powdered LaCoO3, semi-manufactured monolithic catalysts (washcoat/cordierite), and manufactured monolithic catalysts (LaCoO3/washcoat/cordierite) were characterized by XRD, SEM, XPS, N2 adsorption-desorption, H2-TPR, and ultrasonic test, and their catalytic activities and catalytic stability were evaluated by the toluene oxidation test. The research results indicate that the nanoparticles coated on the cordierite substrate as the washcoat can give full play to the catalytic ability of the LaCoO3 active components and also showed high catalytic stability. However, the catalytic properties of the monolithic catalysts vary notably with the species of nano-washcoat. Among all the catalysts, the porous honeycomb surface structure, uniform distribution, high ratio of surface adsorbed oxygen, and strong reducing ability together give the LaCoO3/ZrO2/cordierite monolithic catalyst the highest catalytic activity on the oxidation of toluene at low temperature, which could be attributed to the excellent interactions of perovskite and nano-ZrO2 washcoat. Therefore, the nano-oxides, especially the nano-ZrO2, have a broad practical application potential for toluene oxidation at low temperature as the washcoat of perovskite-based monolithic catalysts.


Assuntos
Compostos de Cálcio , Óxidos , Catálise , Oxirredução , Titânio
19.
Waste Manag ; 120: 10-15, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279822

RESUMO

In-situ catalytic biomass pyrolysis for syngas production is a competitive technology for the recovery of energy in biomass. However, in conventional in-situ catalytic pyrolysis process, the mode of catalyst introduction makes it difficult to separate the catalyst from the char after pyrolysis, resulting in difficulty in catalyst recycling. We considered that the use of monolithic catalyst which has larger size than the biomass feedstock might solve the problem of the separation difficulty between the catalyst and char. In order to verify the feasibility of this strategy, NiO/γ-Al2O3 was respectively supported on ceramic honeycomb, metal foam, and metal wire mesh to produce three monolithic catalysts with different outer surface areas. Their catalytic performance for cattle manure pyrolysis was tested and the result revealed that compared with the granular NiO/γ-Al2O3, using monolithic catalysts with ceramic honeycomb, metal foam, and metal wire mesh carrier respectively increased the gas production by 37%, 33%, and 11%. The use of monolithic catalyst in in-situ catalytic biomass pyrolysis, not only simplified the separation process of catalyst and char, but also enhanced the catalysis performance.


Assuntos
Esterco , Pirólise , Animais , Biomassa , Catálise , Bovinos , Estudos de Viabilidade
20.
J Hazard Mater ; 401: 123281, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32629352

RESUMO

Developing economical and active materials is of great significance for VOC purification. Here, hierarchical porous Al2O3 and ZnO microspheres (Al2O3-pm and ZnO-pm) were synthesized by a facile hydrothermal strategy. The urchin-like Al2O3-pm and flower-like ZnO-pm possess high specific surface area (especially; external surface area) obviously boost the dispersion of Pd with 29.3 % and 30.1 % over Pd/Al2O3-pm and Pd/ZnO-pm, respectively, over 3.4 times higher than those of commercial Al2O3- and ZnO-supported counterparts. Pd/Al2O3-pm possesses excellent activity and CO2 yield in ethyl acetate (EA) degradation, with TOF reaches 7.76 × 10-3 s-1 at 160 °C under GHSV of 50,000 h-1. Moreover, Pd/Al2O3-pm exhibits satisfied performance in EA-contained binary VOCs oxidation and has high long-term stability under both dry and humid conditions. Both Pd sites and Brønsted acid sites participated in reaction process and initially react with EA to form ethylene and ethanol, respectively. Larger amount Brønsted acid sites over Pd/Al2O3-pm promote ethanol formation and C-C cleavage, resulting in different CO2 yields and EA activation mechanisms. The coating greatly enhances Pd dispersion over Pd supported monolithic catalyst, endowing its desired activity and stability even with a much lower Pd loading. This work promotes the potential application of noble-metal-based monolithic materials in VOC degradation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa