Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(22): 5894-5912, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37203688

RESUMO

Understanding patterns of diversity across macro (e.g. species-level) and micro (e.g. molecular-level) scales can shed light on community function and stability by elucidating the abiotic and biotic drivers of diversity within ecological communities. We examined the relationships among taxonomic and genetic metrics of diversity in freshwater mussels (Bivalvia: Unionidae), an ecologically important and species-rich group in the southeastern United States. Using quantitative community surveys and reduced-representation genome sequencing across 22 sites in seven rivers and two river basins, we surveyed 68 mussel species and sequenced 23 of these species to characterize intrapopulation genetic variation. We tested for the presence of species diversity-abundance correlations (i.e. the more-individuals hypothesis, MIH), species-genetic diversity correlations (SGDCs) and abundance-genetic diversity correlations (AGDCs) across all sites to evaluate relationships between different metrics of diversity. Sites with greater cumulative multispecies density (a standardized metric of abundance) had a greater number of species, consistent with the MIH hypothesis. Intrapopulation genetic diversity was strongly associated with the density of most species, indicating the presence of AGDCs. However, there was no consistent evidence for SGDCs. Although sites with greater overall densities of mussels had greater species richness, sites with higher genetic diversity did not always exhibit positive correlations with species richness, suggesting that there are spatial and evolutionary scales at which the processes influencing community-level diversity and intraspecific diversity differ. Our work reveals the importance of local abundance as indicator (and possibly a driver) of intrapopulation genetic diversity.


Assuntos
Bivalves , Unionidae , Humanos , Animais , Metagenômica , Biodiversidade , Água Doce , Rios , Bivalves/genética , Ecossistema
2.
Ecol Lett ; 22(2): 245-255, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548766

RESUMO

Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.


Assuntos
Biodiversidade , Árvores , Clima
3.
J Anim Ecol ; 88(10): 1549-1563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310340

RESUMO

Productivity is a key driver of ecosystem structure and function, so long-term studies are critical to understanding ecosystems with high temporal variation in productivity. In some deserts, productivity, driven by moisture availability, varies immensely over time (rainfall) and space (landscape factors). At high productivity, species richness is expected to be driven in opposing directions by abundance (More Individuals Hypothesis - MIH) and competition. While studies investigating the impacts of spatial variation in productivity on community structure are common, the impacts of temporal variability on productivity are poorly understood. We tested how well rainfall predicted the activity, species numbers and assemblage composition of ants and if responses were moderated by landscape position. We also asked whether the number of species (richness per sampling unit and estimated species richness) responded directly to rainfall or was moderated by ant activity or competition from dominant ants. Over a 22-year period, when annual rainfall fluctuated between 79 mm and 570 mm, we sampled ants using pitfall traps in paired dune and swale habitats in the Simpson Desert, Australia. We used climate records over this period to model changes in ant assemblages. Activity of dominant ants responded primarily to long-term rainfall, increasing exponentially, while subordinate ants responded to short-term weather and time. Consistent with the MIH, the number of ant species was best predicted by activity, particularly that of subordinate ants. Activity of dominant ants had a declining positive effect on numbers of species. Landscape position strongly predicted species composition, while long-term rainfall determined composition at genus level but not species level. Over time, species composition fluctuated, but several genera consistently increased in activity. Productivity moderators such as long-term rainfall and landscape position are key drivers of ant activity and composition in the study ecosystem, acting indirectly on numbers of species. Numbers of species were explained largely by ant activity, making a strong case for the MIH, but not competition. Longer periods of low rainfall may indirectly reduce species richness in desert ecosystems. However, a trend to increasing richness over time may indicate that conservation management can ameliorate this impact.


Assuntos
Formigas , Animais , Austrália , Clima , Ecossistema , Tempo (Meteorologia)
4.
Ecology ; 104(1): e3870, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116044

RESUMO

Recent findings in forests worldwide have demonstrated how directionality in the richness-abundance causality shifts along global climate gradients: The so-called more-species hypothesis (richness determines abundance) prevails in Earth's most productive climates, whereas the opposite, the so-called more-individuals hypothesis (abundance determines richness), is more likely to prevail in climatically harsh conditions. Since temporal variability is the norm, a critical question is whether this directionality shift is also a function of temporal climatic fluctuations locally. Here, we analyze whether directionality in the richness-abundance relationship is contingent on temporal variability over 10 annual consecutive realizations in ephemeral plant assemblages. Our results support the idea that the more-species hypothesis prevailed in the most benign years, whereas the more-individuals hypothesis did so during less productive years, which were significantly linked to the warmest years. These results support the idea that rising temperatures can reverse directionality in the richness-abundance relationship in these annual plant communities, and therefore, climate warming can have a significant effect on the relationship between diversity and ecosystem functions, such as productivity, by altering the prevalence of primary mechanisms involved in species assembly.


Assuntos
Biodiversidade , Ecossistema , Humanos , Plantas , Florestas , Temperatura
5.
Ecol Evol ; 12(8): e9196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991281

RESUMO

Patterns of biodiversity provide insights into the processes that shape biological communities around the world. Variation in species diversity along biogeographical or ecological gradients, such as latitude or precipitation, can be attributed to variation in different components of biodiversity: changes in the total abundance (i.e., more-individual effects) and changes in the regional species abundance distribution (SAD). Rarefaction curves can provide a tool to partition these sources of variation on diversity, but first must be converted to a common unit of measurement. Here, we partition species diversity gradients into components of the SAD and abundance using the effective number of species (ENS) transformation of the individual-based rarefaction curve. Because the ENS curve is unconstrained by sample size, it can act as a standardized unit of measurement when comparing effect sizes among different components of biodiversity change. We illustrate the utility of the approach using two data sets spanning latitudinal diversity gradients in trees and marine reef fish and find contrasting results. Whereas the diversity gradient of fish was mostly associated with variation in abundance (86%), the tree diversity gradient was mostly associated with variation in the SAD (59%). These results suggest that local fish diversity may be limited by energy through the more-individuals effect, while species pool effects are the larger determinant of tree diversity. We suggest that the framework of the ENS-curve has the potential to quantify the underlying factors influencing most aspects of diversity change.

6.
Evolution ; 76(1): 86-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806781

RESUMO

The processes that give rise to species richness gradients are not well understood, but may be linked to resource-based limits on the number of species a region can support. Ecological limits placed on regional species richness should also affect population demography, suggesting that these processes could also generate genetic diversity gradients. If true, we might better understand how broad-scale biodiversity patterns are formed by identifying the common causes of genetic diversity and species richness. We develop a hypothetical framework based on the consequences of regional variation in ecological limits set by resource availability and heterogeneity to simultaneously explain spatial patterns of species richness and neutral genetic diversity. Repurposing raw genotypic data spanning 38 mammal species sampled across 801 sites in North America, we show that estimates of genome-wide genetic diversity and species richness share spatial structure. Notably, species richness hotspots tend to harbor lower levels of within-species genetic variation. A structural equation model encompassing eco-evolutionary processes related to resource availability, habitat heterogeneity, and contemporary human disturbance supports the spatial patterns we detect. These results suggest broad-scale patterns of species richness and genetic diversity could both partly be caused by intraspecific demographic and evolutionary processes acting simultaneously across species.


Assuntos
Biodiversidade , Ecossistema , Animais , Evolução Biológica , Demografia , Humanos , Mamíferos/genética
7.
Ecology ; 102(2): e03233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098569

RESUMO

Disentangling the drivers of diversity gradients can be challenging. The Measurement of Biodiversity (MoB) framework decomposes scale-dependent changes in species diversity into three components of community structure: species abundance distribution (SAD), total community abundance, and within-species spatial aggregation. Here we extend MoB from categorical treatment comparisons to quantify variation along continuous geographic or environmental gradients. Our approach requires sites along a gradient, each consisting of georeferenced plots of abundance-based species composition data. We demonstrate our method using a case study of ants sampled along an elevational gradient of 28 sites in a mixed deciduous forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed that decreases in ant species richness along the elevational gradient were associated with decreasing evenness and total number of species, which counteracted the modest increase in richness associated with decreasing spatial aggregation along the gradient. Total community abundance had a negligible effect on richness at all but the finest spatial grains, SAD effects increased in importance with sampling effort, and the aggregation effect had the strongest effect at coarser spatial grains. These results do not support the more-individuals hypothesis, but they are consistent with a hypothesis of stronger environmental filtering at coarser spatial grains. Our extension of MoB has the potential to elucidate how components of community structure contribute to changes in diversity along environmental gradients and should be useful for a variety of assemblage-level data collected along gradients.


Assuntos
Altitude , Formigas , Animais , Biodiversidade , Ecossistema , Humanos
8.
Ecol Evol ; 11(13): 8923-8940, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257936

RESUMO

It has often been suggested that the productivity of an ecosystem affects the number of species that it can support. Despite decades of study, the nature, extent, and underlying mechanisms of this relationship are unclear. One suggested mechanism is the "more individuals" hypothesis (MIH). This proposes that productivity controls the number of individuals in the ecosystem, and that more individuals can be divided into a greater number of species before their population size is sufficiently small for each to be at substantial risk of extinction. Here, we test this hypothesis using REvoSim: an individual-based eco-evolutionary system that simulates the evolution and speciation of populations over geological time, allowing phenomena occurring over timescales that cannot be easily observed in the real world to be evaluated. The individual-based nature of this system allows us to remove assumptions about the nature of speciation and extinction that previous models have had to make. Many of the predictions of the MIH are supported in our simulations: Rare species are more likely to undergo extinction than common species, and species richness scales with productivity. However, we also find support for relationships that contradict the predictions of the strict MIH: species population size scales with productivity, and species extinction risk is better predicted by relative than absolute species population size, apparently due to increased competition when total community abundance is higher. Furthermore, we show that the scaling of species richness with productivity depends upon the ability of species to partition niche space. Consequently, we suggest that the MIH is applicable only to ecosystems in which niche partitioning has not been halted by species saturation. Some hypotheses regarding patterns of biodiversity implicitly or explicitly overlook niche theory in favor of neutral explanations, as has historically been the case with the MIH. Our simulations demonstrate that niche theory exerts a control on the applicability of the MIH and thus needs to be accounted for in macroecology.

9.
Ecology ; 102(12): e03521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449883

RESUMO

Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.


Assuntos
Besouros , Altitude , Animais , Biodiversidade , Ecossistema , Humanos , Tanzânia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa