RESUMO
BACKGROUND: Heat stress is known to adversely affect testicular activity and manifest the pathogenesis of spermatogenesis. Morin hydrate is a plant-derived compound, which contains a wide range of biological activities. Thus, it is hypothesized that morin hydrate might have an ameliorative effect on heat-induced testicular impairment. There has not been any research on the impact of morin hydrate on heat-induced testicular damage. METHODS: The experimental mice were divided into four groups, groups1 as the normal control group (CN), and the second which underwent heat stress (HS) by immersing the lower body for 15 min in a thermostatically controlled water bath kept at 43 °C (HS), and third and fourth heat-stressed followed by two different dosages of morin hydrate 10 mg/kg (HSM10) and 100 mg/kg (HSM100) for 14 days. RESULTS: Morin hydrate treatment at 10 mg/kg improved, circulating testosterone levels (increases 3ßHSD), and oxidative stress along with improvement in the testis and caput and corpus epididymis histoarchitecture, however, both doses of morin hydrate improved sperm parameters. Morin hydrate treatment significantly increases germ cell proliferation, (GCNA, BrdU staining), expression of Bcl2 and decreases expression of active caspase 3. Heat stress also decreased the expression of AR, ER- α, and ER-ß, and Morin hydrate treatment increased the expression of these markers in the 10 mg/kg treatment group. CONCLUSION: Morin hydrate ameliorates heat-induced testicular impairment modulating testosterone synthesis, germ cell proliferation, and oxidative stress. These effects could be manifested by regulating androgen and estrogen receptors. However, the two doses showed differential effects of some parameters, which requires further investigations.
Assuntos
Flavonas , Sêmen , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Espermatozoides/metabolismo , Espermatogênese , Estresse Oxidativo , Testosterona/metabolismoRESUMO
Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in ß-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in ß-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident ß-cell damage. However, the pretreatment with morin showed promising effects by promoting ß-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced ß-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic ß-cells.
Assuntos
Flavonas , Insulina , Parabenos , Peixe-Zebra , Animais , Humanos , Larva , Antioxidantes/farmacologia , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/uso terapêuticoRESUMO
Global cerebral ischemia is one of the major causes of memory and cognitive impairment. Hyperactivation of acetylcholine esterase (AChE), oxidative stress, and inflammation are reported to cause memory and cognitive impairment in global cerebral ischemia. Morin, a flavonoid, is reported to have neuroprotective properties through its antioxidant and anti-inflammatory in multiple neurological diseases. However, its neuroprotective effects and memory and cognition enhancement have not yet been investigated. In the present study, we have determined the memory and cognition, and neuroprotective activity of Morin in bilateral common carotid artery occlusion and reperfusion (BCCAO/R) in Wistar rats. We found that Morin treatment significantly improved motor performance like grip strength and rotarod. Further, Morin improved memory and cognition in BCCAO rats by decreasing the AchE enzyme activity and enhancing the acetylcholine (Ach) levels. Additionally, Morin exhibited neuroprotection by ameliorating oxidative stress, neuroinflammation, and apoptosis in BCCAO rats. These findings confirm that Morin could enhance memory and cognition by ameliorating AchE activity, oxidative stress, neuroinflammation, and apoptosis in global cerebral ischemia. Therefore, Morin could be a promising neuroprotective and memory enhancer against global cerebral ischemic injury.
Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Isquemia Encefálica , Flavonoides , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Wistar , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Masculino , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Memória/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Cognição/efeitos dos fármacos , FlavonasRESUMO
Lipid accumulation, inflammation, and oxidative stress are the most important causes of muscle insulin resistance. The aim of this study was to investigate the single and combined treatment effects of metformin (MET) and morin (MOR) on lipid accumulation, inflammation, and oxidative stress in the skeletal muscle of mice fed a high-fat diet. The mice were supplemented with MET (230 mg/kg diet), MOR (100 mg/kg diet), and MET + MOR for 9 weeks. Our results revealed that single treatment with MET or MOR, and with a stronger effect of MET + MOR combined treatment, reduced body weight gain, improved glucose intolerance and enhanced Akt phosphorylation in the muscle tissue. In addition, plasma and muscle triglyceride levels were decreased after treatment with MET and MOR. The expression of genes involved in macrophage infiltration and polarization and pro-inflammatory cytokines showed that MET + MOR combined treatment, significantly reduced inflammation in the muscle. Furthermore, combined treatment of MET + MOR with greater efficacy than the single treatment improved several oxidative stress markers in the muscle. Importantly, combined treatment of MET and MOR could increase the expression of nuclear factor erythroid 2-related factor 2, the master regulator of the antioxidant response. These findings suggest that combination of MET with MOR might ameliorate insulin resistance, inflammation, and oxidative stress in the skeletal muscle of mice fed high-fat diet.
Assuntos
Flavonas , Resistência à Insulina , Metformina , Camundongos , Animais , Resistência à Insulina/fisiologia , Metformina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Músculo Esquelético , Estresse Oxidativo , Lipídeos , Camundongos Endogâmicos C57BL , InsulinaRESUMO
Osteosarcoma, the most common primary bone cancer that affects adolescents worldwide, has the early metastatic potential to be responsible for high mortality rates. Morin has a multipurpose role in numerous cancers, whereas little is known about its role in osteosarcoma migration and invasion. Therefore, we hypothesized that morin suppresses the invasive activities and the migratory potential of human osteosarcoma cells. Our results showed that morin reduced migration and invasion capabilities in human osteosarcoma U2OS and HOS cells. Moreover, morin inhibited the urokinase plasminogen activator (uPA) expression through a signal transducer and an activator of transcription-3 (STAT3) phosphorylation. After STAT3 overexpression, the decrease of the migratory potential and uPA expression caused by 100 µM of morin in U2OS cells was countered, indicating that STAT3 contributes to the antimetastatic property of morin in human osteosarcoma cells by reducing uPA. In conclusion, morin may be a potential candidate for the antimetastatic treatment of human osteosarcoma.
Assuntos
Neoplasias Ósseas , Flavonas , Osteossarcoma , Humanos , Adolescente , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Movimento Celular , Invasividade Neoplásica/patologia , Flavonoides/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular TumoralRESUMO
In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.
Assuntos
Flavonas , Metotrexato , Tiorredoxina Dissulfeto Redutase , Ratos , Animais , Metotrexato/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa Transferase/metabolismo , Via de Pentose Fosfato , Relação Estrutura-Atividade , Glutationa Redutase/metabolismo , Peso CorporalRESUMO
Human action recognition (HAR) is growing in machine learning with a wide range of applications. One challenging aspect of HAR is recognizing human actions while playing music, further complicated by the need to recognize the musical notes being played. This paper proposes a deep learning-based method for simultaneous HAR and musical note recognition in music performances. We conducted experiments on Morin khuur performances, a traditional Mongolian instrument. The proposed method consists of two stages. First, we created a new dataset of Morin khuur performances. We used motion capture systems and depth sensors to collect data that includes hand keypoints, instrument segmentation information, and detailed movement information. We then analyzed RGB images, depth images, and motion data to determine which type of data provides the most valuable features for recognizing actions and notes in music performances. The second stage utilizes a Spatial Temporal Attention Graph Convolutional Network (STA-GCN) to recognize musical notes as continuous gestures. The STA-GCN model is designed to learn the relationships between hand keypoints and instrument segmentation information, which are crucial for accurate recognition. Evaluation on our dataset demonstrates that our model outperforms the traditional ST-GCN model, achieving an accuracy of 81.4%.
Assuntos
Aprendizado Profundo , Música , Humanos , Redes Neurais de Computação , Atividades Humanas , Reconhecimento Automatizado de Padrão/métodos , Gestos , Algoritmos , Movimento/fisiologiaRESUMO
Tuberculosis (TB) is a challenging public health issue, particularly in poor and developing countries. Rifampicin (RIF) is one of the most common first-line anti-TB drugs but it is known for its adverse effects on the hepato-renal system. The present study investigated the efficacy of morin hydrate (MH) in protecting hepato-renal damage inflicted by RIF in rats. RIF (50 mg/kg), and a combination of RIF (50 mg/kg) and MH (50 mg/kg) were administered orally for 4 weeks in rats. Silymarin (50 mg/kg) was used as a positive control. Increased levels of serological parameters such as AST, ALT, ALP, LDH, GGT, bilirubin, triglyceride, total cholesterol, urea, uric acid, creatinine, TNF-α, IFN-γ, IL-6 along with the decreased level of IL-10, total protein and albumin were used as markers of hepatic and renal injury. Oxidative damage in the tissues was measured by the increase in lipid peroxidation and decline in GSH, SOD and catalase activities. Histopathology of liver slices was used to study hepatic architecture. Four-week RIF treatment produced altered serological parameters with an increase in pro-inflammatory cytokines in serum suggesting hepatotoxicity and nephrotoxicity. The antioxidant status of the liver and kidney (increased lipid peroxidation and decline in GSH, SOD and catalase) was compromised. Cellular damage and necrosis were observed in liver slices. MH supplementation with RIF improved hepato-renal functions by restoring the serum and tissue markers towards normal values. Histological observations authenticated the results. MH supplementation also reduced the production of pro-inflammatory cytokines. Thus, the results revealed that MH provides protection against RIF-induced hepato-renal injury.
RESUMO
T helper (Th) 17 cells highly contribute to the immunopathology of rheumatoid arthritis. Morin, a natural flavonoid, owns well anti-arthritic action but unclear effect on Th17 differentiation. This study tried to solve this issue and explore the mechanisms in view of cellular metabolism. Naïve CD4+ T cells were treated with anti-CD3/CD28 along with Th17-inducing cytokines. Morin was shown to block Th17 differentiation without affecting cell viability even when Foxp3 was dampened. The mechanisms were ascribed to the limited fatty acid synthesis by restricting FASN transcription, as indicated by metabolomics analysis, nile red staining, detection of triglycerides, FASN overexpression, and addition of palmitic acid. Moreover, morin had slight effect on cell apoptosis and protein palmitoylation during Th17 differentiation, but blocked the binding of RORγt to promoter and CNS2 region of Il17a gene. Oleic acid rescued the inhibition of morin on RORγt function, and Th17-inducing cytokines could not induce RORγt function in SCD1-defficient cells, suggesting that oleic acid but not palmitic acid was the direct effector in the action of morin. Then, PPARγ was identified as the target of morin, and GW9662 or PPARγ CRISPR/Cas9 KO plasmid weakened its above-mentioned effects. The transrepression of FASN by morin was owing to physical interaction between PPARγ and Sp1, and the importance of Sp1 in Th17 differentiation was confirmed by siSp1. Finally, the effects and mechanisms for morin-dampened Th17 responses were confirmed in collagen-induced arthritis (CIA) mice. Collectively, morin inhibited Th17 differentiation and alleviated CIA by limiting fatty acid synthesis subsequent to PPARγ activation.
Assuntos
Artrite Experimental , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , PPAR gama/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Agonistas PPAR-gama , Ácido Oleico , Diferenciação Celular , Citocinas , Flavonoides/farmacologiaRESUMO
BACKGROUND: Organ toxicity limits the therapeutic efficacy of methotrexate (MTX), an anti-metabolite therapeutic that is frequently used as an anti-cancer and immunosuppressive medicine. Hepatocellular toxicity is among the most severe side effects of long-term MTX use. The present study unveils new confirmations as regards the remedial effects of morin on MTX-induced hepatocellular injury through regulation of oxidative stress, apoptosis and MAPK signaling. METHODS AND RESULTS: Rats were subjected to oral treatment of morin (50 and 100 mg/kg body weight) for 10 days. Hepatotoxicity was induced by single intraperitoneal injection of MTX (20 mg/kg body weight) on the 5th day. MTX related hepatic injury was associated with increased MDA while decreased GSH levels, the activities of endogen antioxidants (glutathione peroxidase, superoxide dismutase and catalase) and mRNA levels of HO-1 and Nrf2 in the hepatic tissue. MTX treatment also resulted in apoptosis in the liver tissue via increasing mRNA transcript levels of Bax, caspase-3, Apaf-1 and downregulation of Bcl-2. Conversely, treatment with morin at different doses (50 and 100 mg/kg) considerably mitigated MTX-induced oxidative stress and apoptosis in the liver tissue. Morin also mitigated MTX-induced increases of ALT, ALP and AST levels, downregulated mRNA expressions of matrix metalloproteinases (MMP-2 and MMP-9), MAPK14 and MAPK15, JNK, Akt2 and FOXO1 genes. CONCLUSION: According to the findings of this study, morin may be a potential way to shield the liver tissue from the oxidative damage and apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Metotrexato/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Ratos Wistar , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Transdução de Sinais , Flavonoides/farmacologia , Flavonoides/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Peso CorporalRESUMO
Cadmium (Cd) is one of the heavy metal pollutants present in the environment due to human intervention. It is well known that Cd causes toxicological effects on various organs, including the testes. Morin hydrate is a plant-derived bioflavonoid with antioxidant, anti-inflammatory, and anti-stress properties. Thus, the question can be raised as to whether Morin has an effect on Cd-intoxication-induced testicular impairment. Therefore, the aim of this study was to investigate the role of Morin on Cd-mediated disruption of testicular activity. Mice were divided into three groups: group 1 served as the control group, group 2 was given Cd (10 mg/kg) orally for 35 days, and group 3 was given Cd and Morin hydrate (100 mg/kg) for 35 days. To validate the in vivo findings, an in vitro study on testicular explants was also performed. The results of the in vivo study showed that Cd-intoxicated mice had testicular disorganization, reduced circulating testosterone levels, decreased sperm density, and elevated oxidative stress and sperm abnormality. The expression of the germ cell proliferation marker, germ cell nuclear acidic protein (GCNA), and adipocytokine visfatin were also downregulated. It was observed that Morin hydrate upregulated testicular visfatin and GCNA expression in Cd-intoxicated mice, along with improvement in circulating testosterone, testicular histology, and sperm parameters. Furthermore, the in vitro study showed that Cd-mediated downregulation of testicular visfatin and GCNA expression, along with the suppressed secretion of testosterone from testicular explants, was normalized by Morin treatment, whereas visfatin expression was not. Overall, these data indicate that environmental cadmium exposure impairs testicular activity through downregulation of visfatin and GCNA expression, and Morin might play a protective role against Cd-induced testicular toxicity.
Assuntos
Intoxicação por Cádmio , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , Cádmio/toxicidade , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/farmacologia , Sêmen/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Testosterona/farmacologia , Flavonoides/farmacologia , Flavonoides/metabolismo , Intoxicação por Cádmio/metabolismo , Proliferação de CélulasRESUMO
Morin is a vasorelaxant flavonoid, whose activity is ascribable to CaV1.2 channel blockade that, however, is weak as compared to that of clinically used therapeutic agents. A conventional strategy to circumvent this drawback is to synthesize new derivatives differently decorated and, in this context, morin-derivatives able to interact with CaV1.2 channels were found by employing the potential of PLATO in target fishing and reverse screening. Three different derivatives (5a-c) were selected as promising tools, synthesized, and investigated in in vitro functional studies using rat aorta rings and rat tail artery myocytes. 5a-c were found more effective vasorelaxant agents than the naturally occurring parent compound and antagonized both electro- and pharmaco-mechanical coupling in an endothelium-independent manner. 5a, the series' most potent, reduced also Ca2+ mobilization from intracellular store sites. Furthermore, 5a≈5c > 5b inhibited Ba2+ current through CaV1.2 channels. However, compound 5a caused also a concentration-dependent inhibition of KCa1.1 channel currents.
Assuntos
Inteligência Artificial , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Flavonoides , Vasodilatação , Vasodilatadores , Animais , Ratos , Flavonoides/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismoRESUMO
Objetive: The search for the etiology of Alzheimer's disease has revealed dysregulation of amyloid protein precursors, ß-secretase, mitophagy, apoptosis, and Tau protein genes after ischemic brain injury. Due to this and the fact that some flavonoids have demonstrated anti-amyloidogenic effects on AD targets, we aimed to investigate whether they are effective against an ischemic neuronal injury not only by its antioxidant effects and clarify their mechanism.We simulated the energy depletion that characterizes ischemic processes using iodoacetic acid on HT22 cells. In vitro ischemic assays were also performed under OXPHOS inhibition using inhibitors of the different mitochondrial complexes and intracellular ATP, NADH and NADPH levels were determined. The signaling pathways of MAP kinase (MAPK) and of the PI3K/Akt mTOR were analyzed for its close association with post-ischemic survival.Results: Morin and isoquercitrin showed a significant neuroprotective effect against IAA toxicity, favored the activity of the mitochondrial complexes and prevented the decrease in ERK phosphorylation and activation of the stress proteins JNK and p38 caused by IAA treatment, as well as prevented satisfactorily mTOR and p70 dephosphorylation. They provide a considerable resistance to ischemic brain injury by modulating signaling pathways that stimulate mitochondrial biogenesis and promoting the activity of electron transport chain.Highlights Morin and isoquercitrin showed a significant neuroprotective effect against IAA toxicity.Morin and isoquercitrin favor the activity of the mitochondrial complexes I, III and V.Morin and isoquercitrin prevent the decrease in ERK phosphorylation caused by IAA.Morin shows a better profile avoiding Akt dephosphorylation than isoquercetrin.Morin and isoquercitrin prevent dephosphorylation of mTOR and p70.
Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fármacos Neuroprotetores/farmacologia , Biogênese de Organelas , Transdução de Sinais , Flavonoides/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologiaRESUMO
We measure the mean inner potential (MIP) of hematite, α-Fe2O3, using electron holography and transmission electron microscopy. Since the MIP is sensitive to valence electrons, we propose its use as a chemical bonding parameter for solids. Hematite can test the sensitivity of the MIP as a bonding parameter because of the Morin magnetic phase transition. Across this transition temperature, no change in the corundum crystal structure can be distinguished, while a change in hybridized Fe-3d and O-2p states was reported, affecting ionic bonding. For a given crystallographic phase, the change in the MIP with temperature is expected to be minor due to thermal expansion. Indeed, we measure the temperature dependence in corundum α-Al2O3(112¯0) between 95 and 295 K showing a constant MIP value of â¼16.8 V within the measurement accuracy of 0.45 V. Thus, our objectives are as follows: measure the MIP of hematite as a function of temperature and examine the sensitivity of the MIP as a bonding parameter for crystals. Measured MIPs of α-Fe2O3(112¯0) above the Morin transition are equal, 17.85 ± 0.50 V, 17.93 ± 0.50 V, at 295 K, 230 K, respectively. Below the Morin transition, at 95 K, a significant reduction of â¼1.3 V is measured to 16.56 ± 0.46 V. We show that this reduction follows charge redistribution resulting in increased ionic bonding.
RESUMO
Alpha-2-macroglobulin (α2M) is an essential antiproteinase that is widely distributed in human plasma. The present study was aimed at investigating the binding of a potential therapeutic dietary flavonol, morin, with human α2M using a multi-spectroscopic and molecular docking approach. Recently, flavonoid-protein interaction has gained significant attention, because a majority of dietary bioactive components interact with proteins, thereby altering their structure and function. The results of the activity assay exhibited a 48% reduction in the antiproteolytic potential of α2M upon interaction with morin. Fluorescence quenching tests unequivocally confirmed quenching in the fluorescence of α2M in the presence of morin, conforming complex formation and demonstrating that the binding mechanism involves a dynamic mode of interaction. Synchronous fluorescence spectra of α2M with morin showed perturbation in the microenvironment around tryptophan residues. Furthermore, structural changes were observed through CD and FT-IR, showing alterations in the secondary structure of α2M induced by morin. FRET further supports the results of the dynamic mode of quenching. Moderate interaction is shown by binding constant values using Stern-Volmer's fluorescence spectroscopy. Morin binds to α2M at 298 K with a binding constant of 2.7 × 104 M-1, indicating the strength of the association. The α2M-morin system was found to have negative ΔG values, which suggests that the binding process was spontaneous. Molecular docking also reveals the different amino acid residues involved in this binding process, revealing that the binding energy is -8.1 kcal/mol.
Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Humanos , Gravidez , Feminino , alfa 2-Macroglobulinas Associadas à Gravidez/química , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides , Ligação ProteicaRESUMO
Melanoma incidence, a type of skin cancer, has been increasing worldwide. There is a strong need to develop new therapeutic strategies to improve melanoma treatment. Morin is a bioflavonoid with the potential for use in the treatment of cancer, including melanoma. However, therapeutic applications of morin are restrained owing to its low aqueous solubility and limited bioavailability. This work investigates morin hydrate (MH) encapsulation in mesoporous silica nanoparticles (MSNs) to enhance morin bioavailability and consequently increase the antitumor effects in melanoma cells. Spheroidal MSNs with a mean size of 56.3 ± 6.5 nm and a specific surface area of 816 m2/g were synthesized. MH was successfully loaded (MH-MSN) using the evaporation method, with a loading capacity of 28.3% and loading efficiency of 99.1%. In vitro release studies showed that morin release from MH-MSNs was enhanced at pH 5.2, indicating increased flavonoid solubility. The in vitro cytotoxicity of MH and MH-MSNs on human A375, MNT-1 and SK-MEL-28 melanoma cell lines was investigated. Exposure to MSNs did not affect the cell viability of any of the cell lines tested, suggesting that the nanoparticles are biocompatible. The effect of MH and MH-MSNs on reducing cell viability was time- and concentration-dependent in all melanoma cell lines. The A375 and SK-MEL-28 cell lines were slightly more sensitive than MNT-1 cells in both the MH and MH-MSN treatments. Our findings suggest that MH-MSNs are a promising delivery system for the treatment of melanoma.
Assuntos
Melanoma , Nanopartículas , Humanos , Dióxido de Silício , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos , Melanoma/tratamento farmacológico , Flavonoides/farmacologia , PorosidadeRESUMO
1. Fusarium tritici widely exists in a variety of grain feeds. The T-2 toxin is the main hazardous component produced by Fusarium tritici, making a serious hazard to poultry industry. Morin, belonging to the flavonoid family, can be extracted from mulberry plants and possesses anticancer, antioxidant and anti-inflammatory compounds, but whether morin protects chicks with T-2 toxin poisoning remains unclear. This experiment firstly established a chick model of T-2 toxin poisoning and then investigated the protective effects and mechanism of morin against T-2 toxin in chicks.2. The function of liver and kidney was measured by corresponding alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine (Cre) and uric acid (UA) kits. Histopathological changes were observed by haematoxylin-eosin staining. The status of oxidative stress was measured by MDA, SOD, CAT, GSH and GSH-PX kits. The mRNA levels of TNF-α, COX-2, IL-1ß, IL-6, caspase-1, caspase-3 and caspase-11 were measured by quantitative real-time PCR. Heterophil extracellular trap (HET) release was analysed by immunofluorescence and fluorescence microplate.3. The model with T-2 toxin poisoning in chicks was successfully established. Morin significantly decreased T-2 toxin-induced ALT, AST, ALP, BUN, Cre and UA, and improved T-2 toxin-induced liver cell rupture, liver cord disorder and kidney interstitial oedema. Oxidative stress analysis showed that morin ameliorated T-2 toxin-induced damage by reducing malondialdehyde (MDA), increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-PX). The qRT-PCR analysis showed that morin reduced T-2 toxin-induced mRNA expressions of TNF-α, COX-2, IL-1ß, IL-6, caspase-1, caspase-3 and caspase-11. Moreover, morin significantly reduced the release of T-2 toxin-induced HET in vitro and in vivo.4. Morin can protect chicks from T-2 toxin poisoning by decreasing HETs, oxidative stress and inflammatory responses, which make it a useful compound against T-2 toxin poisoning in poultry feed.
Assuntos
Armadilhas Extracelulares , Toxina T-2 , Animais , Toxina T-2/toxicidade , Toxina T-2/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Armadilhas Extracelulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Interleucina-6/metabolismo , Galinhas/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Fígado , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismoRESUMO
Morin (3,5,7,2',4'-pentahydroxyflavone; MR) is a bioactive plant polyphenol whose therapeutic efficacy is hindered by its poor biopharmaceutical properties. The purpose of this study was to develop a nanoparticle (NP) formulation to enhance the bioactivity and oral bioavailability of MR. The nanoprecipitation technique was employed to encapsulate MR in lipid-cored poly(lactide-co-glycolide) (PLGA) NPs. The optimal NPs were about 200 nm in size with an almost neutral surface charge and a loading efficiency of 82%. The NPs exhibited sustained release of MR within 24 h. In vitro antioxidant assays showed that MR encapsulation did not affect its antioxidant activity. On the other hand, anti-inflammatory assays in lipopolysaccharide-stimulated macrophages revealed a superior anti-inflammatory activity of MR NPs compared to free MR. Furthermore, oral administration of MR NPs to mice at a single dose of 20 mg/kg MR achieved a 5.6-fold enhancement in bioavailability and a prolongation of plasma half-life from 0.13 to 0.98 h. The results of this study present a promising NP formulation for MR which can enhance its oral bioavailability and bioactivity for the treatment of different diseases such as inflammation.
RESUMO
This study investigated the effect and mechanism of morin in inducing autophagy and apoptosis in hepatocellular carcinoma cells through the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription protein 3(STAT3) pathway. Human hepatocellular carcinoma SK-HEP-1 cells were stimulated with different concentrations of morin(0, 50, 100, 125, 200, and 250 µmol·L~(-1)). The effect of morin on the viability of SK-HEP-1 cells was detected by Cell Counting Kit-8(CCK-8). The effect of morin on the proliferation and apoptosis of SK-HEP-1 cells was investigated using colony formation assay, flow cytometry, and BeyoClick~(TM) EdU-488 with different concentrations of morin(0, 125, and 250 µmol·L~(-1)). The changes in the autophagy level of cells treated with morin were examined by transmission electron microscopy and autophagy inhibitors. The impact of morin on the expression levels of proteins related to the Akt/mTOR/STAT3 pathway was verified by Western blot. Compared with the control group, the morin groups showed decreased viability of SK-HEP-1 cells in a time-and concentration-dependent manner, increased number of apoptotic cells, up-regulated expression level of apoptosis marker PARP, up-regulated phosphorylation level of apoptosis-regulating protein H2AX, decreased number of positive cells and the colony formation rate, an upward trend of expression levels of autophagy-related proteins LC3-â ¡, Atg5, and Atg7, and decreased phosphorylation levels of Akt, mTOR, and STAT3. These results suggest that morin can promote apoptosis, inhibit proliferation, and induce autophagy in hepatocellular carcinoma cells, and its mechanism of action may be related to the Akt/mTOR/STAT3 pathway.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Proliferação de Células , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Several studies demonstrate the beneficial effects of dietary flavonoids on the cardiovascular system. Since perivascular adipose tissue (PVAT) plays an active role in the regulation of vascular tone in both health and diseases, the present study aimed to assess the functional interaction between PVAT and flavonoids in vitro on rat aorta rings. Several flavonoids proved to display both antispasmodic and spasmolytic activities towards noradrenaline-induced contraction of rings deprived of PVAT (-PVAT). However, on PVAT-intact (+PVAT) rings, both actions of some flavonoids were lost and/or much decreased. In rings-PVAT, the superoxide donor pyrogallol mimicked the effect of PVAT, while in rings+PVAT the antioxidant mito-tempol restored both activities of the two most representative flavonoids, namely apigenin and chrysin. The Rho-kinase inhibitor fasudil, or apigenin and chrysin concentration-dependently relaxed the vessel active tone induced by the Rho-kinase activator NaF; the presence of PVAT counteracted apigenin spasmolytic activity, though only in the absence of mito-tempol. Similar results were obtained in rings pre-contracted by phenylephrine. Finally, when ß3 receptors were blocked by SR59230A, vasorelaxation caused by both flavonoids was unaffected by PVAT. These data are consistent with the hypothesis that both noradrenaline and apigenin activated adipocyte ß3 receptors with the ensuing release of mitochondrial superoxide anion, which once diffused toward myocytes, counteracted flavonoid vasorelaxant activity. This phenomenon might limit the beneficial health effects of dietary flavonoids in patients affected by either obesity and/or other pathological conditions characterized by sympathetic nerve overactivity.