Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486336

RESUMO

Moving object detection under a moving camera is a challenging question, especially in a complex background. This paper proposes a background orientation field reconstruction method based on Poisson fusion for detecting moving objects under a moving camera. As enlightening by the optical flow orientation of a background is not dependent on the scene depth, this paper reconstructs the background orientation through Poisson fusion based on the modified gradient. Then, the motion saliency map is calculated by the difference between the original and the reconstructed orientation field. Based on the similarity in appearance and motion, the paper also proposes a weighted accumulation enhancement method. It can highlight the motion saliency of the moving objects and improve the consistency within the object and background region simultaneously. Furthermore, the proposed method incorporates the motion continuity to reject the false positives. The experimental results obtained by employing publicly available datasets indicate that the proposed method can achieve excellent performance compared with current state-of-the-art methods.

2.
Comput Biol Med ; 132: 104220, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33799216

RESUMO

The motion performed by some protozoa is a crucial visual stimulus in microscopy analysis, especially when they have almost imperceptible morphological characteristics. Microorganisms can be distinguished through the interactions of their locomotion with neighboring elements, as observed in some parasitological analysis of Trypanosoma cruzi. In dye-free blood microscopy, the low contrast of this parasite makes it difficult to detect them. Thus, the parasite's interaction with the neighborhood, such as collisions with blood cells and shocks during the escape of confinements in cell clumps, generates collateral motions that assist its detection. Assuming that the collateral motion of the parasite can be sufficiently noticeable to overcome the dynamic contexts of inspection, we propose a novel computational approach that is based on motion saliency. We estimate motion in microscopy videos using dense optical flow and we investigate vestiges in saliency maps that could characterize the collateral motion of parasites. Our biological-inspired method shows that the parasite's collateral motion is a relevant feature for T. cruzi detection. Therefore, our computational model is a promising aid in the research and medical diagnosis of Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Microscopia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa