Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Glob Chang Biol ; 29(3): 603-617, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36169599

RESUMO

Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.


Assuntos
Biodiversidade , Cadeia Alimentar , Animais , Temperatura , Filogenia , Lagos , Altitude
2.
Mol Ecol ; 29(16): 3117-3130, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32628343

RESUMO

One major goal in microbial ecology is to establish the importance of deterministic and stochastic processes for community assembly. This is relevant to explain and predict how diversity changes at different temporal scales. However, understanding of the relative quantitative contribution of these processes and particularly of how they may change over time is limited. Here, we assessed the importance of deterministic and stochastic processes based on the analysis of the bacterial microbiome in one alpine oligotrophic and in one subalpine mesotrophic lake, which were sampled over two consecutive years at different time scales. We found that in both lakes, homogeneous selection (i.e., a deterministic process) was the main assembly process at the annual scale and explained 66.7% of the bacterial community turnover, despite differences in diversity and temporal variability patterns between ecosystems. However, in the alpine lake, homogenizing dispersal (i.e., a stochastic process) was the most important assembly process at the short-term (daily and weekly) sampling scale and explained 55% of the community turnover. Alpha diversity differed between lakes, and seasonal stability of the bacterial community was more evident in the oligotrophic lake than in the mesotrophic one. Our results demonstrate how important forces that govern temporal changes in bacterial communities act at different time scales. Overall, our study validates on a quantitative basis, the importance and dominance of deterministic processes in structuring bacterial communities in freshwater environments over long time scales.


Assuntos
Lagos , Microbiota , Organismos Aquáticos , Microbiota/genética , RNA Ribossômico 16S , Processos Estocásticos
3.
Glob Chang Biol ; 26(10): 5475-5491, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32602183

RESUMO

Climate warming has yielded earlier ice break-up dates in recent decades for lakes leading to water temperature increases, altered habitat, and both increases and decreases to ecosystem productivity. Within lakes, the effect of climate warming on secondary production in littoral and pelagic habitats remains unclear. The intersection of changing habitat productivity and warming water temperatures on salmonids is important for understanding how climate warming will impact mountain ecosystems. We develop and test a conceptual model that expresses how earlier ice break-up dates influence within lake habitat production, water temperatures and the habitat utilized by, resources obtained and behavior of salmonids in a mountain lake. We measured zoobenthic and zooplankton production from the littoral and pelagic habitats, thermal conditions, and the habitat use, resource use, and fitness of Brook Trout (Salvelinus fontinalis). We show that earlier ice break-up conditions created a "resource-rich" littoral-benthic habitat with increases in zoobenthic production compared to the pelagic habitat which decreased in zooplankton production. Despite the increases in littoral-benthic food resources, trout did not utilize littoral habitat or zoobenthic resources due to longer durations of warm water temperatures in the littoral zone. In addition, 87% of their resources were supported by the pelagic habitat during periods with earlier ice break-up when pelagic resources were least abundant. The decreased reliance on littoral-benthic resources during earlier ice break-up caused reduced fitness (mean reduction of 12 g) to trout. Our data show that changes to ice break-up drive multi-directional results for resource production within lake habitats and increase the duration of warmer water temperatures in food-rich littoral habitats. The increased duration of warmer littoral water temperatures reduces the use of energetically efficient habitats culminating in decreased trout fitness.


Assuntos
Ecossistema , Lagos , Animais , Gelo , Temperatura , Truta , Água
4.
Glob Chang Biol ; 24(1): e139-e158, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28833814

RESUMO

Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll-a concentrations over the past ~150 years from high-resolution, well-dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll-a concentrations in recent decades indicate a regional-scale response to climate and Saharan dust deposition. Chlorophyll-a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake-specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, among others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in softwater, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further impact the ecological condition of these ecosystems.


Assuntos
Cladocera/fisiologia , Mudança Climática , Poeira , Lagos/química , África do Norte , Animais , Biota , Ecossistema , Espanha , Temperatura
5.
Water Resour Res ; 54(10): 8442-8455, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30555186

RESUMO

Rapid increase in lake temperature can cause a shift toward the dominance of warm temperature tolerant species, including Cyanobacteria that are deficient in polyunsaturated fatty acids (PUFA) supporting consumer growth and reproduction. To increase our understanding of how changes in physicochemical lake parameters affect phytoplankton composition and the provision of dietary quality to consumers in subalpine oligotrophic lakes, we conducted a multiannual study (2013-2015) in the 34-m-deep Lake Lunz and investigated interannual changes in (a) water temperature, transparency, and lake inflow; (b) seston (<30-µm particle size class) biomass and taxonomy; and (c) seston nutritional quality, assessed by its PUFA composition. The phytoplankton taxonomic composition within this seston size class varied mostly by changes in physical parameters (temperature, conductivity, lake transparency, and days of full ice cover). The dietary quality of seston varied mostly with lake physical parameters and, to a lesser extent, with phytoplankton taxonomic composition, suggesting that the nutritional quality at the base of the food web in Lake Lunz is likely to respond directly to changes in lake physical parameters. This multiannual data set, combining monthly values for physicochemical variables, grazable phytoplankton composition, and fatty acids in seston, provides nutritional information of how annual weather changes may induce changes at the base of the food web in this and perhaps also other oligotrophic subalpine lakes.

6.
J Environ Manage ; 226: 169-179, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119041

RESUMO

The legacy of fish stocking in mountain lake ecosystems has left behind a challenge for land managers around the globe. In the US and Canada, historically fishless mountain lakes have been stocked with trout for over a century. These non-native trout have cascading ecosystem effects, and can accumulate atmospherically deposited contaminants. While the negative impacts of stocking in these ecosystems have become increasingly apparent, wilderness fishing has garnered cultural value in the angling community. As a result, public lands managers are left with conflicting priorities. National park managers across the western US are actively trying to reconcile the cultural and ecological values of mountain lakes through the development of management plans for mountain lake fisheries. However, visitors' social perceptions, attitudes, and values regarding mountain lake fisheries management have remained unquantified, and thus largely left out of the decision-making process. Our study evaluated the recreation habits, values, and attitudes of national park visitors towards fish stocking and management of mountain lakes of two national parks in the Pacific Northwest. We found that most visitors favor fish removal using a conservation approach, whereby sensitive lakes are restored, while fish populations are maintained in lakes that are more resilient. An important consideration for managers is that many mountain lake anglers consume fish on an annual basis, thus we emphasize the use of outreach and education regarding the accumulation of contaminants in fish tissues. Our findings help elucidate the conflicting views of stakeholders, and we provide recommendations to inform management of mountain lakes fisheries in North America and abroad.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Parques Recreativos , Opinião Pública , Animais , Canadá , Ecossistema , Humanos , Lagos , América do Norte , Noroeste dos Estados Unidos
7.
Ecology ; 97(10): 2740-2749, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859107

RESUMO

Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly heterogeneous landscape can offset, and even reverse, the local negative impacts of an invasive species. Further, prey body size was found to be a key species trait mediating the ecological impacts of the aquatic invasive predator. Our study highlights the novel application of a functional approach to understanding the impacts of biological invasions, using species traits that pertain directly to potential responses to exotic species.


Assuntos
Biodiversidade , Espécies Introduzidas , Zooplâncton , Animais , Biomassa , Ecossistema , Lagoas
8.
Sci Total Environ ; 921: 170958, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365042

RESUMO

Oligotrophic mountain lakes act as sensitive indicators of landscape-scale changes in mountain regions due to their low nutrient concentration and remote, relatively undisturbed watersheds. Recent research shows that phosphorus (P) concentrations are increasing in mountain lakes around the world, creating more mesotrophic states and altering lake ecosystem structure and function. The relative importance of atmospheric deposition and climate-driven changes to local biogeochemistry in driving these shifts is not well established. In this study, we test whether increasing temperatures in watershed soils may be contributing to the observed increases in mountain lake P loading. Specifically, we test whether higher soil temperatures increase P mobilization from mountain soils by accelerating the rate of geochemical weathering and soil organic matter decomposition. We used paired soil incubation (lab) and soil transplant (field) experiments with mountain soils from around the western United States to test the effects of warming on rain-leachable P concentration, soil P mobilization, and soil respiration. Our results show that while higher temperature can increase soil P mobilization, low soil moisture can limit the effects of warming in some situations. Soils with lower bulk densities, higher pH, lower aluminum oxide contents, and lower ratios of carbon to nitrogen had much higher rain-leachable P concentration across all sites and experimental treatments. Together, these results suggest that mountain watersheds with high-P soils and relatively high soil moisture could have the largest increases in P mobilization with warming. Consequently, lakes and streams in such watersheds could become especially susceptible to soil-driven eutrophication as temperatures rise.

9.
Sci Total Environ ; 933: 173181, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740217

RESUMO

Lake Surface Water Temperature (LSWT) influences critical bio-geological processes in lake ecosystems, and there is growing evidence of rising LSWT over recent decades worldwide and future shifts in thermal patterns are expected to be a major consequence of global warming. At a regional scale, assessing recent trends and anticipating impacts requires data from a number of lakes, but long term in situ monitoring programs are scarce, particularly in mountain areas. In this work, we propose the combined use of satellite-derived temperature with in situ data for a five-year period (2017-2022) from 5 small (<0.5km2) high altitude (1880-2680 masl) Pyrenean lakes. The comparison of in situ and satellite-derived data in a common period (2017-2022) during the summer season showed a notably high (r = 0.94, p < 0.01) correlation coefficient, indicative of a robust relationship between the two data sources. The root mean square errors ranged from 1.8 °C to 3.9 °C, while the mean absolute errors ranged from 1.6 °C to 3.6 °C. We applied the obtained in situ-satellite eq. (2017-2022) to Landsat 5, 7 and 8/9 data since 1985 to reconstruct the summer surface temperature of the five studied lakes with in situ data and to four additional lakes with no in situ monitoring data. Reconstructed LSWT for the 1985-2022 showed an upward trend in all lakes. Moreover, paleolimnological reconstructions based on sediment cores studies demonstrate large changes in the last decades in organic carbon accumulation, sediment fluxes and bioproductivity in the Pyrenean lakes. Our research represents the first comprehensive investigation conducted on high mountain lakes in the Pyrenees that compares field monitoring data with satellite-derived temperature records. The results demonstrate the reliability of satellite-derived LSWT for surface temperatures in small lakes, and provide a tool to improve the LSWT in lakes with no monitoring surveys.

10.
Water Res ; 245: 120547, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708771

RESUMO

Mountain lakes provide clear drinking water to humankind but are strongly impacted by global change. Benthic biofilms are crucial for maintaining water quality in these oligotrophic lakes, yet little is known about the effects of global change on mountain biofilm communities. By combining analyses of metabarcoding data on 16S and 18S rRNA genes with climatic and environmental data, we investigated global change effects on the composition of biofilm prokaryotic and micro-eukaryotic assemblages in a five-year monitoring program of 26 Pyrenean lakes (2016-2020). Using time-decay relationships and within-lake dissimilarity modelling, we show that the composition of both prokaryotic and micro-eukaryotic biofilm communities significantly shifted and their biodiversity declined from 2016 to 2020. In particular, analyses of temporal trends with linear mixed models indicated an increase in the richness and relative abundance of cyanobacteria, including potentially toxigenic cyanobacteria, and a concomitant decrease in diatom richness and relative abundance. While these compositional shifts may be due to several drivers of global change acting simultaneously on mountain lake biota, water pH and hardness were, from our data, the main environmental variables associated with changes for both prokaryotic and micro-eukaryotic assemblages. Water pH and hardness increased in our lakes over the study period, and are known to increase in Pyrenean lakes due to the intensification of rock weathering as a result of climate change. Given predicted climate trends and if water pH and hardness do cause some changes in benthic biofilms, those changes might be further exacerbated in the future. Such biofilm compositional shifts may induce cascading effects in mountain food webs, threatening the resilience of the entire lake ecosystem. The rise in potentially toxigenic cyanobacteria also increases intoxication risks for humans, pets, wild animals, and livestock that use mountain lakes. Therefore, our study has implications for water quality, ecosystem health, public health, as well as local economies (pastoralism, tourism), and highlights the possible impacts of global change on mountain lakes.

11.
Aquat Sci ; 85(3): 71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192889

RESUMO

Mountain lakes are especially vulnerable to climate change, but are also increasingly exposed to local anthropogenic development through winter and summer tourism. In this study, we aimed to tease apart the influence of tourism from that of climate in a mountain lake located within one of the largest French ski resorts, by combining paleolimnological and present ecological data. The reconstructed long-term ecological dynamics highlighted an increase in lake biological production from the end of the Little Ice Age up to the 1950s, suggesting a historical dominance of climate control. Afterward, a major drop in pelagic production occurred at the same time as the watershed erosion increased and peaked in the 1990s, concomitant with massive digging for the ski resort expansion. The benthic invertebrates collapsed in the 1980s, concomitantly with the onset of massive salmonid stocking and recent warming. Stable isotope analyses identified benthic invertebrates as the major salmonid diet resource and suggested a possible direct impact of salmonid stocking on benthic invertebrates. However, habitat use may differ among salmonid species as suggested by the way fish DNA was preserved in surficial sediment. The high abundances of macrozooplankton further confirmed the limited reliance of salmonids on pelagic resources. The variable thermal tolerance of benthic invertebrates suggested that the recent warming may mostly affect littoral habitats. Our results indicate that winter and summer tourism may differently affect the biodiversity of mountain lakes and could collectively interfere with the ecological impacts of recent warming, making local management of primary importance to preserve their ecological integrity. Supplementary Information: The online version contains supplementary material available at 10.1007/s00027-023-00968-6.

12.
Biodivers Data J ; 11: e99558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327325

RESUMO

Background: Mountain insect biodiversity is unique, but is menaced by different drivers, particularly climate and land-use changes. In mainland Portugal, the highest mountain - Serra da Estrela - is one of the most important biodiversity hotspots, being classified as Natural Park since 1976. Many lepidopteran and odonate species, including rare and protected species, are known to occur in Serra da Estrela, but basic knowledge on their abundance, distribution and ecology is still lacking. Standardised sampling of these communities is crucial to provide valuable biological information to support short-term decision-making for conservation management, setting simultaneously the standards for mountain biodiversity monitoring aiming to tackle the effects of environmental change in the long-term. New information: This study reports novel information on lepidopteran and odonate species diversity, distribution and abundance from Serra da Estrela Natural Park (Portugal). Seventy-two lepidopteran and 26 odonate species were sampled in this protected area, including the first findings of Apaturailia (Denis & Schiffermüller, 1775), Macromiasplendens (Pictet, 1843) and Vanessavirginiensis (Drury, 1773). New populations of Euphydriasaurinia (Rottemburg, 1775) and Oxygastracurtisii (Dale, 1834), protected species under the Habitats Directive, were found in this Natural Park and novel distribution and ecological data were collected for most species, including several rare species and subspecies [e.g. Aeshnajuncea (Linnaeus, 1758), Coenonymphaglycerioniphioides Staudinger, 1870, Cyanirissemiargus (Rottemburg, 1775) and Sympetrumflaveolum (Linnaeus, 1758)]. All data were collected using standardised sampling allowing its use as a baseline for biodiversity monitoring in Serra da Estrela.

13.
Environ Pollut ; 311: 119922, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961567

RESUMO

Microplastics have become one of the most serious global threats to animal and human health. While their presence has been documented in all Earth water ecosystems, including remote mountain lakes, the observation that the abundance of microplastics is largely different across nearby lakes has rarely been examined. As part of a citizen science initiative, this study analyzed for the first time the abundance of microplastics in the surface of 35 glacial lakes of Sierra Nevada National Park in Southern Spain with the objective of determining the local factors that control their abundance. First, we described the shape, size, color and nature of microplastics. Second, we tested whether the number of microplastics differed between basins and analyzed environmental and morphometrical features of lakes affecting their abundance. We found that microplastics were common in most lakes, with a maximum abundance of 21.3 particles per liter that akin to some of the most microplastic polluted lakes worldwide. Fragments were the predominant shape (59.7%) followed by fibers (38.8%) and very scarce spheres (1.5%). Microplastics were observed for all size-fractions, but the abundance of particles <45 µm was higher, what advocates for the use of low pore-size filters to prevent underestimation of microplastics. While the mean abundance of microplastics did not differ among basins, their quantity was related to the presence of meadows surrounding the lakes. This result indicates that while atmospheric transport of microsplastics may equally reach all basins, differences in microplastics among nearby-lakes has an anthropic origin caused by mountaineers who find lakes with ample meadows much more attractive to visit relative to barren lakes. The staggering number in these remote lakes, headwaters of rivers that feed drinking reservoirs, is a major concern that warrants further investigation and the strict compliance with waste management laws to reduce the harmful impacts of microplastic contamination.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Plásticos , Espanha , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 29(41): 62312-62329, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35397723

RESUMO

The effects of the COVID-19 lockdown on deposition and surface water chemistry were investigated in an area south of the Alps. Long-term data provided by the monitoring networks revealed that the deposition of sulfur and nitrogen compounds in this area has stabilized since around 2010; in 2020, however, both concentrations and deposition were significantly below the average values of the previous decade for SO4 and NO3. Less evident changes were observed for NH4 and base cation. The estimated decrease of deposition in 2020 with respect to the previous decade was on average - 54% and - 46% for SO4 and NO3, respectively. The lower deposition of SO4 and NO3 recorded in 2020 was caused by the sharp decrease of SO2 and particularly of NOx air concentrations mainly due to the mobility restrictions consequent to the COVID-19 lockdown. The limited effects on NH4 deposition can be explained by the fact that NH3 emission was not affected by the lockdown, being mainly related to agricultural activities. A widespread response to the decreased deposition of S and N compounds was observed in a group of pristine freshwater sites, with NO3 concentrations in 2020 clearly below the long-term average. The rapid chemical recovery observed at freshwater sites in response to the sharp decrease of deposition put in evidence the high resilience potential of freshwater ecosystems in pristine regions and demonstrated the great potential of emission reduction policy in producing further substantial ameliorations of the water quality at sensitive sites.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Controle de Doenças Transmissíveis , Ecossistema , Monitoramento Ambiental/métodos , Humanos
15.
Sci Total Environ ; 853: 158415, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084784

RESUMO

The introduction of fish into mountain lakes typically leads to profound ecological changes within the food web, but its consequences depend on the dietary preferences of fish and on the resistance of prey organisms against predation. Here we used stable isotopes and fatty acid analyses in combination with the traditional stomach content analysis to examine the diet of an allopatric population of Salmo trutta, which has originally been stocked during the Middle Ages in an alpine lake, and to identify what components of the food web are more affected. The results from stable isotopes and fatty acids indicated that planktonic and benthic food sources, in particular chironomids larvae, were the most important prey items all year round. Airborne terrestrial insects made most of the stomach content during the ice-free period, but their stable isotope and fatty acids values did not match up with those in fish, suggesting a minor role for fish nutrition. Copepods were relevant as fish diet only during the ice-covered period. In contrast to the stable isotope values of the fish muscle tissue, those of the liver, which reflect potentially short-term changes in diet, were significantly different between the ice-covered and ice-free period. Fatty acid analysis revealed that polyunsaturated fatty acids contents of chironomids, copepods, and chydorids contributed similarly to fish diet. Overall, our results suggest that the introduction of this fish species has decreased the lake-to-land resource transfer by reducing the abundance of emerging midges and that the population is food-limited as indicated by its low condition factor. This field study eventually acts as a reference for possible future reintroduction efforts, as this population is one of few existing in Europe with pure Danubian origin.


Assuntos
Lagos , Truta , Animais , Truta/fisiologia , Dieta/veterinária , Cadeia Alimentar , Ácidos Graxos Insaturados , Ácidos Graxos
16.
Freshw Biol ; 66(1): 169-176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33510548

RESUMO

Cyanobacteria are one of the oldest organisms on Earth and they originated at a time when damaging ultraviolet (UV) C radiation still reached the surface. Their long evolution led to several adaptations to avoid deleterious effects caused by exposure to solar UV radiation. Synthesis of sunscreen substances, such as mycosporine-like amino acids (MAAs), allows them to photosynthesise with reduced risk of cell damage. The interplay of solar UV radiation and MAAs is well documented for cyanobacteria in the plankton realm, but little is known for those in the benthic realm, particularly of clear alpine lakes.Here, we assessed the temporal dynamics of MAAs in the benthic algal community of one clear alpine lake dominated by cyanobacteria during the ice-free season and along a depth gradient using state-of-the-art analytical methods (high-performance liquid chromatography, nuclear magnetic resonance, liquid chromatography-mass spectrometry). We differentiated between the epilithic cyanobacterial community and the overlying loosely attached filamentous cyanobacteria, as we expected they will have an important shielding/shading effect on the former. We hypothesised that in contrast to the case of phytoplankton, benthic cyanobacteria will show less pronounced temporal changes in MAAs concentration in response to changes in solar UV exposure.Three UV-absorbing substances were present in both types of communities, whereby all were unknown. The chemical structure of the dominant unknown substance (maximum absorption at 334 nm) resulted in the identification of a novel MAA that we named aplysiapalythine-D for its similarity to the previously described aplysiapalythine-C.Chlorophyll-a-specific MAA concentrations for epilithic and filamentous cyanobacteria showed a significant decrease with depth, although only traces were found in the former community. The temporal dynamics in MAA concentrations of filamentous cyanobacteria showed no significant variations during the ice-free season.Our result on the low temporal MAA dynamics agrees with the reduced growth rates of benthic cyanobacteria reported for cold ecosystems. The permanent presence of this community, which is adapted to the high UV levels characteristic of clear alpine lakes, probably represents the most important primary producers of these ecosystems.

17.
Front Microbiol ; 12: 777084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154025

RESUMO

In aquatic systems, microbes likely play critical roles in biogeochemical cycling and ecosystem processes, but much remains to be learned regarding microbial biogeography and ecology. The microbial ecology of mountain lakes is particularly understudied. We hypothesized that microbial distribution among lakes is shaped, in part, by aquatic plant communities and the biogeochemistry of the lake. Specifically, we investigated the associations of yellow water lilies (Nuphar polysepala) with the biogeochemistry and microbial assemblages within mountain lakes at two scales: within a single lake and among lakes within a mountain range. We first compared the biogeochemistry of lakes without water lilies to those colonized to varying degrees by water lilies. Lakes with >10% of the surface occupied by water lilies had lower pH and higher dissolved organic carbon than those without water lilies and had a different microbial composition. Notably, cyanobacteria were negatively associated with water lily presence, a result consistent with the past observation that macrophytes outcompete phytoplankton and can suppress cyanobacterial and algal blooms. To examine the influence of macrophytes on microbial distribution within a lake, we characterized microbial assemblages present on abaxial and adaxial water lily leaf surfaces and in the water column. Microbial diversity and composition varied among all three habitats, with the highest diversity of microbes observed on the adaxial side of leaves. Overall, this study suggests that water lilies influence the biogeochemistry and microbiology of mountains lakes.

18.
Front Microbiol ; 12: 533121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046907

RESUMO

From the aboveground vegetation to the belowground microbes, terrestrial communities differ between the highly divergent alpine (above treeline) and subalpine (below treeline) ecosystems. Yet, much less is known about the partitioning of microbial communities between alpine and subalpine lakes. Our goal was to determine whether the composition of bacterioplankton communities of high-elevation mountain lakes differed across treeline, identify key players in driving the community composition, and identify potential environmental factors that may be driving differences. To do so, we compared bacterial community composition (using 16S rDNA sequencing) of alpine and subalpine lakes in the Southern Rocky Mountain ecoregion at two time points: once in the early summer and once in the late summer. In the early summer (July), shortly after peak runoff, bacterial communities of alpine lakes were distinct from subalpine lakes. Interestingly, by the end of the summer (approximately 5 weeks after the first visit in August), bacterial communities of alpine and subalpine lakes were no longer distinct. Several bacterial amplicon sequence variants (ASVs) were also identified as key players by significantly contributing to the community dissimilarity. The community divergence across treeline found in the early summer was correlated with several environmental factors, including dissolved organic carbon (DOC), pH, chlorophyll-a (chl-a), and total dissolved nitrogen (TDN). In this paper, we offer several potential scenarios driven by both biotic and abiotic factors that could lead to the observed patterns. While the mechanisms for these patterns are yet to be determined, the community dissimilarity in the early summer correlates with the timing of increased hydrologic connections with the terrestrial environment. Springtime snowmelt brings the flushing of mountain watersheds that connects terrestrial and aquatic ecosystems. This connectivity declines precipitously throughout the summer after snowmelt is complete. Regional climate change is predicted to bring alterations to precipitation and snowpack, which can modify the flushing of solutes, nutrients, and terrestrial microbes into lakes. Future preservation of the unique alpine lake ecosystem is dependent on a better understanding of ecosystem partitioning across treeline and careful consideration of terrestrial-aquatic connections in mountain watersheds.

19.
Sci Total Environ ; 708: 135180, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812417

RESUMO

High mountain lakes are considered sensitive indicators of the effects of natural and anthropogenic drivers, including atmospheric deposition and climate change. In this study, we assess long-term trends in the chemistry of a group of high altitude lakes in the Western Alps, Italy, lying in bedrock with a relevant presence of basic, soluble rocks. An in-depth investigation was performed on two key-sites (Lakes Boden Inferiore and Superiore) for which continuous chemical data are available for a period of 30 years. A group of 10 additional lakes in the same area was also considered; these lakes were sampled at the end of the ice-free period during irregular surveys in the period 1980-2017. Water samples were analysed for the main chemical variables, including pH, electrical conductivity, major ions (Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, NO3-) and algal nutrients (phosphorus and nitrogen compounds, reactive silica). A steep increase in conductivity and ion concentrations was detected at the key-sites: conductivity increased from 40-45 to 60-70 µS cm-1 over the period 1984-2017; sulphate concentrations more than doubled over the same period (from 50-60 to 120-180 µeq L-1) and base cations increased from 400-500 to 600-750 µeq L-1. An increase in the solute content was also detected in the survey lakes (average conductivity from 39 ± 20 to 57 ± 23 µS cm-1). The analysis of meteorological data revealed a significant increase of air temperature (0.019 °C y-1 over the period 1950-2017), mainly in spring and summer (0.033 °C y-1), and a decrease of snow cover depth and duration. Meteo-climatic drivers were identified as the responsible for the chemical changes occurred in the lakes. Climate-driven effects on weathering rates were mainly indirect and occurred by affecting the flow paths of water at both surface and subsurface level. Cryosphere modification (reduced snow cover and permafrost thawing) also played a role.

20.
Sci Total Environ ; 715: 136913, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007888

RESUMO

The evaluation of climate change impact on lakes typically relies on statistical methods like the reorganisation of organism communities (beta diversity) or transfer functions. A new method uses the silicification of diatoms that correlates with temperature and nutrients. The so-called silicification value (SiVa) overcomes problems of descriptive statistics or absent indicator species. Averaged over diatom communities, it related inversely to lake surface temperatures in mountain lakes. Hence, its change over time (δ SiVa) in a lake was hypothesised to reflect global change-driven lake warming quantitatively, which supposedly climaxes in shallow lakes. Sixteen different δ SiVa calculation approaches were tested. They (1) included or excluded planktic diatoms, (2) integrated fixed or variable time series referring to climate data or changes in diatom assemblages, (3) employed a top-bottom or regression approach and (4) expressed the δ SiVa as relative or absolute values. Subfossil diatom assemblages from 24 sediment cores from Bavarian and north Tyrolian mountain lakes served as sample set. All possible approaches were evaluated for their explanatory power for lake characteristics using GLMs. The top-bottom benthic approach with fixed climate data-based time series appeared to be the best model based on AIC and the extent of variable integration. In line with the hypothesis, the strongest decrease of δ SiVa was evident in most shallow lakes. Segmented regression further highlighted a positive correlation with depth if shallower than 10 m. By referring to the negative SiVa-summer temperature relation, δ SiVa also enabled the quantification of lake warming within the last decades, which ranged mainly between 0.1 °C and 1.1 °C per decade, consistent with existing literature. Additionally, a 100 year temperature reconstruction from a varved sediment core successfully validated the approach. Further studies may focus and extend its application to deeper lakes, but it can already serve as a powerful tool in palaeolimnological studies of shallow lakes like hard-water mountain lakes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa