Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biomed Eng Online ; 22(1): 41, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143020

RESUMO

BACKGROUND: Motor imagery is a cognitive process of imagining a performance of a motor task without employing the actual movement of muscles. It is often used in rehabilitation and utilized in assistive technologies to control a brain-computer interface (BCI). This paper provides a comparison of different time-frequency representations (TFR) and their Rényi and Shannon entropies for sensorimotor rhythm (SMR) based motor imagery control signals in electroencephalographic (EEG) data. The motor imagery task was guided by visual guidance, visual and vibrotactile (somatosensory) guidance or visual cue only. RESULTS: When using TFR-based entropy features as an input for classification of different interaction intentions, higher accuracies were achieved (up to 99.87%) in comparison to regular time-series amplitude features (for which accuracy was up to 85.91%), which is an increase when compared to existing methods. In particular, the highest accuracy was achieved for the classification of the motor imagery versus the baseline (rest state) when using Shannon entropy with Reassigned Pseudo Wigner-Ville time-frequency representation. CONCLUSIONS: Our findings suggest that the quantity of useful classifiable motor imagery information (entropy output) changes during the period of motor imagery in comparison to baseline period; as a result, there is an increase in the accuracy and F1 score of classification when using entropy features in comparison to the accuracy and the F1 of classification when using amplitude features, hence, it is manifested as an improvement of the ability to detect motor imagery.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Imaginação/fisiologia , Eletroencefalografia/métodos , Movimento , Entropia
2.
J Neuroeng Rehabil ; 20(1): 141, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37872633

RESUMO

BACKGROUND: Electromyography (EMG) is a classical technique used to record electrical activity associated with muscle contraction and is widely applied in Biomechanics, Biomedical Engineering, Neuroscience and Rehabilitation Robotics. Determining muscle activation onset timing, which can be used to infer movement intention and trigger prostheses and robotic exoskeletons, is still a big challenge. The main goal of this paper was to perform a review of the state-of-the-art of EMG onset detection methods. Moreover, we compared the performance of the most commonly used methods on experimental EMG data. METHODS: A total of 156 papers published until March 2022 were included in the review. The papers were analyzed in terms of application domain, pre-processing method and EMG onset detection method. The three most commonly used methods [Single (ST), Double (DT) and Adaptive Threshold (AT)] were applied offline on experimental intramuscular and surface EMG signals obtained during contractions of ankle and knee joint muscles. RESULTS: Threshold-based methods are still the most commonly used to detect EMG onset. Compared to ST and AT, DT required more processing time and, therefore, increased onset timing detection, when applied on experimental data. The accuracy of these three methods was high (maximum error detection rate of 7.3%), demonstrating their ability to automatically detect the onset of muscle activity. Recently, other studies have tested different methods (especially Machine Learning based) to determine muscle activation onset offline, reporting promising results. CONCLUSIONS: This study organized and classified the existing EMG onset detection methods to create consensus towards a possible standardized method for EMG onset detection, which would also allow more reproducibility across studies. The three most commonly used methods (ST, DT and AT) proved to be accurate, while ST and AT were faster in terms of EMG onset detection time, especially when applied on intramuscular EMG data. These are important features towards movement intention identification, especially in real-time applications. Machine Learning methods have received increased attention as an alternative to detect muscle activation onset. However, although several methods have shown their capability offline, more research is required to address their full potential towards real-time applications, namely to infer movement intention.


Assuntos
Exoesqueleto Energizado , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Movimento/fisiologia
3.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450718

RESUMO

In this work, new highly sensitive graphene-based flexible strain sensors are produced. In particular, polyvinylidene fluoride (PVDF) nanocomposite films filled with different amounts of graphene nanoplatelets (GNPs) are produced and their application as wearable sensors for strain and movement detection is assessed. The produced nanocomposite films are morphologically characterized and their waterproofness, electrical and mechanical properties are measured. Furthermore, their electromechanical features are investigated, under both stationary and dynamic conditions. In particular, the strain sensors show a consistent and reproducible response to the applied deformation and a Gauge factor around 30 is measured for the 1% wt loaded PVDF/GNP nanocomposite film when a deformation of 1.5% is applied. The produced specimens are then integrated in commercial gloves, in order to realize sensorized gloves able to detect even small proximal interphalangeal joint movements of the index finger.


Assuntos
Grafite , Nanocompostos , Dispositivos Eletrônicos Vestíveis , Polivinil
4.
Sensors (Basel) ; 21(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072291

RESUMO

Meditation practice is mental health training. It helps people to reduce stress and suppress negative thoughts. In this paper, we propose a camera-based meditation evaluation system, that helps meditators to improve their performance. We rely on two main criteria to measure the focus: the breathing characteristics (respiratory rate, breathing rhythmicity and stability), and the body movement. We introduce a contactless sensor to measure the respiratory rate based on a smartphone camera by detecting the chest keypoint at each frame, using an optical flow based algorithm to calculate the displacement between frames, filtering and de-noising the chest movement signal, and calculating the number of real peaks in this signal. We also present an approach to detecting the movement of different body parts (head, thorax, shoulders, elbows, wrists, stomach and knees). We have collected a non-annotated dataset for meditation practice videos consists of ninety videos and the annotated dataset consists of eight videos. The non-annotated dataset was categorized into beginner and professional meditators and was used for the development of the algorithm and for tuning the parameters. The annotated dataset was used for evaluation and showed that human activity during meditation practice could be correctly estimated by the presented approach and that the mean absolute error for the respiratory rate is around 1.75 BPM, which can be considered tolerable for the meditation application.


Assuntos
Meditação , Algoritmos , Humanos , Movimento (Física) , Respiração , Taxa Respiratória
5.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960551

RESUMO

In a disaster scene, triage is a key principle for effectively rescuing injured people according to severity level. One main parameter of the used triage algorithm is the patient's consciousness. Unmanned aerial vehicles (UAV) have been investigated toward (semi-)automatic triage. In addition to vital parameters, such as heart and respiratory rate, UAVs should detect victims' mobility and consciousness from the video data. This paper presents an algorithm combining deep learning with image processing techniques to detect human bodies for further (un)consciousness classification. The algorithm was tested in a 20-subject group in an outside environment with static (RGB and thermal) cameras where participants performed different limb movements in different body positions and angles between the cameras and the bodies' longitudinal axis. The results verified that the algorithm performed better in RGB. For the most probable case of 0 degrees, RGB data obtained the following results: Mathews correlation coefficient (MMC) of 0.943, F1-score of 0.951, and precision-recall area under curve AUC (PRC) score of 0.968. For the thermal data, the MMC was 0.913, F1-score averaged 0.923, and AUC (PRC) was 0.960. Overall, the algorithm may be promising along with others for a complete contactless triage assessment in disaster events during day and night.


Assuntos
Estado de Consciência , Dispositivos Aéreos não Tripulados , Algoritmos , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador
6.
J Sleep Res ; 29(5): e12986, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017288

RESUMO

In clinical practice, the quality of polysomnographic recordings in children and patients with neurodegenerative diseases may be affected by sensor displacement and diminished total sleep time due to stress during the recording. In the present study, we investigated if contactless three-dimensional (3D) detection of periodic leg movements during sleep was comparable to polysomnography. We prospectively studied a sleep laboratory cohort from two Austrian sleep laboratories. Periodic leg movements during sleep were classified according to the standards of the World Association of Sleep Medicine and served as ground truth. Leg movements including respiratory-related events (A1) and excluding respiratory-related events (A2 and A3) were presented as A1, A2 and A3. Three-dimensional movement analysis was carried out using an algorithm developed by the Austrian Institute of Technology. Fifty-two patients (22 female, mean age 52.2 ± 15.1 years) were included. Periodic leg movement during sleep indexes were significantly higher with 3D detection compared to polysomnography (33.3 [8.1-97.2] vs. 30.7 [2.9-91.9]: +9.1%, p = .0055/27.8 [4.5-86.2] vs. 24.2 [0.00-88.7]: +8.2%, p = .0154/31.8 [8.1-89.5] vs. 29.6 [2.4-91.1]: +8.9%, p = .0129). Contactless automatic 3D analysis has the potential to detect restlessness mirrored by periodic leg movements during sleep reliably and may especially be suited for children and the elderly.


Assuntos
Imageamento Tridimensional/métodos , Polissonografia/métodos , Síndrome das Pernas Inquietas/diagnóstico , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Gravação de Videoteipe
7.
J Biol Regul Homeost Agents ; 34(5 Suppl. 3): 87-96. Technology in Medicine, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33386038

RESUMO

There is a significant request for wearable systems for vital signs and athletic performance monitoring during sport practice, both in professional and non-professional fields. Respiratory rate is a rather neglected parameter in this field, but several studies show that it is a strong marker of physical exertion. The aim of the present scoping review is to evaluate the number and kind of existing studies on wearable technologies for the analysis of the chest wall movement for respiratory monitoring in sport and fitness. The review included studies investigating the use of contact-based wearable techniques for the detection of chest wall movement for respiratory monitoring during professional or amateur sport, during fitness and physical activity. The search was conducted on PubMed/Medline, Scopus and Google Scholar electronic databases using keywords. Data extracted were entered into a Microsoft Excel spreadsheet by the leading author and then double-checked by the second author. A total of 25 descriptive studies met the inclusion criteria. Few studies on small number of athletes were found, technologies were often evaluated without a reference system, data on participants are sometimes missing. To date, we are not able to draw conclusions on which is the best and most reliable device to use during sport practice.


Assuntos
Parede Abdominal , Esportes , Dispositivos Eletrônicos Vestíveis , Atletas , Exercício Físico , Humanos
8.
Sensors (Basel) ; 20(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182928

RESUMO

BACKGROUND: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been successfully used for detecting and measuring body movements such as finger movement and foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a suitable alternative for continuously out-of-hospital lumbar-pelvic movement (LPM) monitoring. Monitoring these movements can help medical experts better understand individuals' low back pain experience. However, there is a lack of prior studies in this research area. Therefore, this paper explores the potential of E-Skin sensors to detect and measure the anatomical angles of lumbar-pelvic movements by building a linear relationship model to compare its performance to clinically validated inertial measurement unit (IMU)-based sensing system (ViMove). METHODS: The paper first presents a review and classification of existing wireless sensing technologies for monitoring of body movements, and then it describes a series of experiments performed with E-Skin sensors for detecting five standard LPMs including flexion, extension, pelvic tilt, lateral flexion, and rotation, and measure their anatomical angles. The outputs of both E-Skin and ViMove sensors were recorded during each experiment and further analysed to build the comparative models to evaluate the performance of detecting and measuring LPMs. RESULTS: E-Skin sensor outputs showed a persistently repeating pattern for each movement. Due to the ability to sense minor skin deformation by E-skin sensor, its reaction time in detecting lumbar-pelvic movement is quicker than ViMove by ~1 s. CONCLUSIONS: E-Skin sensors offer new capabilities for detecting and measuring lumbar-pelvic movements. They have lower cost compared to commercially available IMU-based systems and their non-invasive highly stretchable characteristic makes them more comfortable for long-term use. These features make them a suitable sensing technology for developing continuous, out-of-hospital real-time monitoring and management systems for individuals with low back pain.


Assuntos
Região Lombossacral/fisiologia , Monitorização Fisiológica , Movimento/fisiologia , Pelve/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Nanoestruturas/química , Coluna Vertebral/fisiologia , Adulto Jovem
9.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121229

RESUMO

Soft robotics is an emerging field, since it offers distinct opportunities in areas where conventional rigid robots are not a feasible solution. However, due to the complex motions of soft robots and the stretchable nature of soft building materials, conventional electronic and fiber optic sensors cannot be used in soft robots, thus, hindering the soft robots' ability to sense and respond to their surroundings. Fiber Bragg grating (FBG)-based sensors are very popular among various fiber optic sensors, but their stiff nature makes it challenging to be used in soft robotics. In this study, a soft robotic gripper with a sinusoidally embedded stretchable FBG-based fiber optic sensor is demonstrated. Unlike a straight FBG embedding configuration, this unique sinusoidal configuration prevents sensor dislocation, supports stretchability and improves sensitivity by seven times when compared to a straight configuration. Furthermore, the sinusoidally embedded FBG facilitates the detection of various movements and events occurring at the soft robotic gripper, such as (de)actuation, object holding and external perturbation. The combination of a soft robot and stretchable fiber optic sensor is a novel approach to enable a soft robot to sense and response to its surroundings, as well as to provide its operation status to the controller.

10.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182236

RESUMO

Radar measurements of gravitational mass-movements like snow avalanches have become increasingly important for scientific flow observations, real-time detection and monitoring. Independence of visibility is a main advantage for rapid and reliable detection of those events, and achievable high-resolution imaging proves invaluable for scientific measurements of the complete flow evolution. Existing radar systems are made for either detection with low-resolution or they are large devices and permanently installed at test-sites. We present mGEODAR, a mobile FMCW (frequency modulated continuous wave) radar system for high-resolution measurements and low-resolution gravitational mass-movement detection and monitoring purposes due to a versatile frequency generation scheme. We optimize the performance of different frequency settings with loop cable measurements and show the freespace range sensitivity with data of a car as moving point source. About 15 dB signal-to-noise ratio is achieved for the cable test and about 5 dB or 10 dB for the car in detection and research mode, respectively. By combining continuous recording in the low resolution detection mode with real-time triggering of the high resolution research mode, we expect that mGEODAR enables autonomous measurement campaigns for infrastructure safety and mass-movement research purposes in rapid response to changing weather and snow conditions.

11.
Behav Res Methods ; 52(4): 1783-1794, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31974805

RESUMO

In human face-to-face communication, speech is frequently accompanied by visual signals, especially communicative hand gestures. Analyzing these visual signals requires detailed manual annotation of video data, which is often a labor-intensive and time-consuming process. To facilitate this process, we here present SPUDNIG (SPeeding Up the Detection of Non-iconic and Iconic Gestures), a tool to automatize the detection and annotation of hand movements in video data. We provide a detailed description of how SPUDNIG detects hand movement initiation and termination, as well as open-source code and a short tutorial on an easy-to-use graphical user interface (GUI) of our tool. We then provide a proof-of-principle and validation of our method by comparing SPUDNIG's output to manual annotations of gestures by a human coder. While the tool does not entirely eliminate the need of a human coder (e.g., for false positives detection), our results demonstrate that SPUDNIG can detect both iconic and non-iconic gestures with very high accuracy, and could successfully detect all iconic gestures in our validation dataset. Importantly, SPUDNIG's output can directly be imported into commonly used annotation tools such as ELAN and ANVIL. We therefore believe that SPUDNIG will be highly relevant for researchers studying multimodal communication due to its annotations significantly accelerating the analysis of large video corpora.


Assuntos
Gestos , Percepção da Fala , Humanos , Movimento , Fala
12.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669319

RESUMO

Home monitoring and remote care systems aim to ultimately provide independent living care scenarios through non-intrusive, privacy-protecting means. Their main aim is to provide care through appreciating normal habits, remotely recognizing changes and acting upon those changes either through informing the person themselves, care providers, family members, medical practitioners, or emergency services, depending on need. Care giving can be required at any age, encompassing young to the globally growing aging population. A non-wearable and unobtrusive architecture has been developed and tested here to provide a fruitful health and wellbeing-monitoring framework without interfering in a user's regular daily habits and maintaining privacy. This work focuses on tracking locations in an unobtrusive way, recognizing daily activities, which are part of maintaining a healthy/regular lifestyle. This study shows an intelligent and locally based edge care system (ECS) solution to identify the location of an occupant's movement from daily activities using impulse radio-ultra wide band (IR-UWB) radar. A new method is proposed calculating the azimuth angle of a movement from the received pulse and employing radar principles to determine the range of that movement. Moreover, short-term fourier transform (STFT) has been performed to determine the frequency distribution of the occupant's action. Therefore, STFT, azimuth angle, and range calculation together provide the information to understand how occupants engage with their environment. An experiment has been carried out for an occupant at different times of the day during daily household activities and recorded with time and room position. Subsequently, these time-frequency outcomes, along with the range and azimuth information, have been employed to train a support vector machine (SVM) learning algorithm for recognizing indoor locations when the person is moving around the house, where little or no movement indicates the occurrence of abnormalities. The implemented framework is connected with a cloud server architecture, which enables to act against any abnormality remotely. The proposed methodology shows very promising results through statistical validation and achieved over 90% testing accuracy in a real-time scenario.

13.
Sensors (Basel) ; 16(9)2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618063

RESUMO

Human activity recognition algorithms based on information obtained from wearable sensors are successfully applied in detecting many basic activities. Identified activities with time-stationary features are characterised inside a predefined temporal window by using different machine learning algorithms on extracted features from the measured data. Better accuracy, precision and recall levels could be achieved by combining the information from different sensors. However, detecting short and sporadic human movements, gestures and actions is still a challenging task. In this paper, a novel algorithm to detect human basic movements from wearable measured data is proposed and evaluated. The proposed algorithm is designed to minimise computational requirements while achieving acceptable accuracy levels based on characterising some particular points in the temporal series obtained from a single sensor. The underlying idea is that this algorithm would be implemented in the sensor device in order to pre-process the sensed data stream before sending the information to a central point combining the information from different sensors to improve accuracy levels. Intra- and inter-person validation is used for two particular cases: single step detection and fall detection and classification using a single tri-axial accelerometer. Relevant results for the above cases and pertinent conclusions are also presented.

14.
Biosensors (Basel) ; 14(9)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329790

RESUMO

In recent years, the interest in medical monitoring for human health has been rapidly increasing due to widespread concern. Hydrogels are widely used in medical monitoring and other fields due to their excellent mechanical properties, electrical conductivity and adhesion. However, some of the non-degradable materials in hydrogels may cause some environmental damage and resource waste. Therefore, organic renewable natural polymers with excellent properties of biocompatibility, biodegradability, low cost and non-toxicity are expected to serve as an alternative to those non-degradable materials, and also provide a broad application prospect for the development of natural-polymer-based hydrogels as flexible electronic devices. This paper reviews the progress of research on many different types of natural-polymer-based hydrogels such as proteins and polysaccharides. The applications of natural-polymer-based hydrogels in body movement detection and biomedical monitoring are then discussed. Finally, the present challenges and future prospects of natural polymer-based hydrogels are summarized.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Humanos , Polímeros/química , Monitorização Fisiológica , Movimento , Materiais Biocompatíveis/química , Técnicas Biossensoriais
15.
Diagnostics (Basel) ; 14(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39272723

RESUMO

Clinical fetal monitoring devices can only be operated by medical professionals and are overly costly, prone to detrimental false positives, and emit radiation. Thus, highly accurate, easily accessible, simplified, and cost-effective fetal monitoring devices have gained an enormous interest in obstetrics. In this study, a cost-effective and user-friendly wearable home fetal movement and distress detection device is developed and assessed for early-stage design progression by facilitating continuous, comfortable, and non-invasive monitoring of the fetus during the final trimester. The functionality of the developed prototype is mainly based on a microcontroller, a single accelerometer, and a specialized fetal phonocardiography (fPCG) acquisition board with a low-cost microphone. The developed system is capable of identifying fetal movement and monitors fetal heart rhythm owing to its considerable sensitivity. Further, the device includes a Global System for Mobile Communication (GSM)-based alert system for instant distress notifications to the mother, proxy, and emergency services. By incorporating digital signal processing, the system achieves zero false negatives in detecting fetal movements, which was validated against an open-source database. The acquired results clearly substantiated the efficacy of the fPCG acquisition board and alarm system, ensuring the prompt identification of fetal distress.

16.
Front Med (Lausanne) ; 10: 1160373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554507

RESUMO

A wearable device-based fetal movement detection system for pregnant women is proposed to resolve the problems of low accuracy of fetal movement detection by fetal heart monitor, difficulties of fetal movement monitoring by pregnant women in person, and inability to monitor for long periods of time by ultrasonic Doppler imaging device. The overall software design flow of the system is proposed after determining the overall structure of the system based on symmetric sensor. The application circuit of the three-axis acceleration sensor MC3672 and its supporting sensor data collection program are designed, and the application circuit of the main control chip NRF52840 with Cortex-M4 core is analyzed. The function of data collection and algorithm recognition result transfer to a smartphone is realized through the fetal movement recognition and algorithm design and Bluetooth communication design. Finally, the system test scheme is introduced, which involves performing functional tests on four healthy pregnant volunteers and analyzing the results. The experimental results show that the average recognition rate and correct rate of this system to recognize fetal movement is 89.74% when using the real fetal movement actively perceived by pregnant women as the standard, achieving a domestic and wearable design of fetal movement monitoring device for pregnant women that can be used to analyze and predict the fetal health condition.

17.
Front Neurosci ; 17: 1153252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234262

RESUMO

Introduction: Compensatory movements usually occur in stroke survivors with hemiplegia, which is detrimental to recovery. This paper proposes a compensatory movement detection method based on near-infrared spectroscopy (NIRS) technology and verifies its feasibility using a machine learning algorithm. We present a differential-based signal improvement (DBSI) method to enhance NIRS signal quality and discuss its effect on improving detection performance. Method: Ten healthy subjects and six stroke survivors performed three common rehabilitation training tasks while the activation of six trunk muscles was recorded using NIRS sensors. After data preprocessing, DBSI was applied to the NIRS signals, and two time-domain features (mean and variance) were extracted. An SVM algorithm was used to test the effect of the NIRS signal on compensatory behavior detection. Results: Classification results show that NIRS signals have good performance in compensatory detection, with accuracy rates of 97.76% in healthy subjects and 97.95% in stroke survivors. After using the DBSI method, the accuracy improved to 98.52% and 99.47%, respectively. Discussion: Compared with other compensatory motion detection methods, our proposed method based on NIRS technology has better classification performance. The study highlights the potential of NIRS technology for improving stroke rehabilitation and warrants further investigation.

18.
Sensors (Basel) ; 12(6): 8236-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969398

RESUMO

Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.


Assuntos
Tecnologia de Sensoriamento Remoto/métodos , Pessoas com Deficiência Visual , Caminhada , Algoritmos , Bengala , Humanos
19.
J Neural Eng ; 19(6)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36317288

RESUMO

Objective. Pre-movement decoding plays an important role in detecting the onsets of actions using low-frequency electroencephalography (EEG) signals before the movement of an upper limb. In this work, a binary classification method is proposed between two different states.Approach. The proposed method, referred to as filter bank standard task-related component analysis (FBTRCA), is to incorporate filter bank selection into the standard task-related component analysis (STRCA) method. In FBTRCA, the EEG signals are first divided into multiple sub-bands which start at specific fixed frequencies and end frequencies that follow in an arithmetic sequence. The STRCA method is then applied to the EEG signals in these bands to extract CCPs. The minimum redundancy maximum relevance feature selection method is used to select essential features from these correlation patterns in all sub-bands. Finally, the selected features are classified using the binary support vector machine classifier. A convolutional neural network (CNN) is an alternative approach to select canonical correlation patterns.Main Results. Three methods were evaluated using EEG signals in the time window from 2 s before the movement onset to 1 s after the movement onset. In the binary classification between a movement state and the resting state, the FBTRCA achieved an average accuracy of 0.8968 ± 0.0847 while the accuracies of STRCA and CNN were 0.8228 ± 0.1149 and 0.8828 ± 0.0917, respectively. In the binary classification between two actions, the accuracies of STRCA, CNN, and FBTRCA were 0.6611 ± 0.1432, 0.6993 ± 0.1271, 0.7178 ± 0.1274, respectively. Feature selection using filter banks, as in FBTRCA, produces comparable results to STRCA.Significance. The proposed method provides a way to select filter banks in pre-movement decoding, and thus it improves the classification performance. The improved pre-movement decoding of single upper limb movements is expected to provide people with severe motor disabilities with a more natural, non-invasive control of their external devices.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Movimento , Extremidade Superior , Algoritmos , Imaginação
20.
Front Hum Neurosci ; 16: 841312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360289

RESUMO

Establishing the basic knowledge, methodology, and technology for a framework for the continuous decoding of hand/arm movement intention was the aim of the ERC-funded project "Feel Your Reach". In this work, we review the studies and methods we performed and implemented in the last 6 years, which build the basis for enabling severely paralyzed people to non-invasively control a robotic arm in real-time from electroencephalogram (EEG). In detail, we investigated goal-directed movement detection, decoding of executed and attempted movement trajectories, grasping correlates, error processing, and kinesthetic feedback. Although we have tested some of our approaches already with the target populations, we still need to transfer the "Feel Your Reach" framework to people with cervical spinal cord injury and evaluate the decoders' performance while participants attempt to perform upper-limb movements. While on the one hand, we made major progress towards this ambitious goal, we also critically discuss current limitations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa