Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Environ Res ; 241: 117560, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949290

RESUMO

The properties of biocarriers significantly influence the performance of a moving bed-biofilm reactor (MBBR). This study aimed to assess the impact of media type, filling ratio, and hydraulic retention time (HRT) on biofilm formation and MBBR performance in both batch and continuous setups using real municipal wastewater. Two different media, high-density polyethylene (HDPE) and polypropylene (PPE), with varying surface area and properties were used. Biofilm growth and MBBR performance were monitored and optimized using response surface methodology. The effect of different media was investigated for three filling ratios of 20%, 40% and 60% and HRT of 4, 6 and 8 h. Results depicted a better biofilm growth on HDPE media in comparison to PPE carriers due to difference in media structure and surface properties. At all the conditions tested, HDPE media showed comparatively better performance for the removal of organic matter and nutrients than PPE media. The maximum organic matter removal efficiency was found as 77% and 75% at an HRT of 6 h and filling ratio of 40% for HDPE and PPE media, respectively. The ammonia removal was also found better for HDPE media due to its geometry and structure favoring the anoxic conditions with maximum removal of 89% achieved at 6-h HRT and 40% filling ratio. Overall, the system with HDPE media indicated more stability in terms of reactor performance than PPE carriers with variations in the operating conditions.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Polietileno , Reatores Biológicos
2.
Environ Res ; 252(Pt 2): 118943, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631471

RESUMO

Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. However, characteristics and mechanisms of nitrification-denitrification in biological redox reactions mediated by different concentrations of BioMnOx are still unclear. Fate of nutrients (e.g., NH4+-N, TP, NO3--N) and COD were investigated through different concentrations of BioMnOx produced by Mn(II) in the moving bed biofilm reactor (MBBR). 34% and 89.2%, 37.8% and 89.8%, 57.3% and 88.9%, and 62.1% and 90.4% of TN and COD by MBBR were synchronously removed in four phases, respectively. The result suggested that Mn(II) significantly improved the performance of simultaneous nitrification and denitrification (SND) and TP removal based on manganese (Mn) redox cycling. Characteristics of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and electron transfer system activity (ETSA) were discussed, demonstrating that ROS accumulation reduced the ETSA and GSH-Px activities when Mn(II) concentration increased. Extracellular polymeric substance (EPS) function and metabolic pathway of Mn(II) were explored. Furthermore, effect of cellular components on denitrification was evaluated including BioMnOx performances, indicating that Mn(II) promoted the non-enzymatic action of cell fragments. Finally, mechanism of nitrification and denitrification, denitrifying phosphorus and Mn removal was further elucidated through X-ray photoelectron spectroscopy (XPS), high throughput sequencing, and fourier transform infrared reflection (FTIR). This results can bringing new vision for controlling nutrient pollution in redox process of Mn(II).


Assuntos
Compostos de Manganês , Nitrogênio , Óxidos , Fósforo , Compostos de Manganês/química , Compostos de Manganês/metabolismo , Fósforo/metabolismo , Nitrogênio/metabolismo , Óxidos/química , Manganês/análise , Reatores Biológicos , Desnitrificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Nitrificação , Eliminação de Resíduos Líquidos/métodos
3.
Environ Res ; 252(Pt 1): 118810, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552829

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.


Assuntos
Biofilmes , Reatores Biológicos , Metano , Nitratos , Oxirredução , Biofilmes/crescimento & desenvolvimento , Metano/metabolismo , Anaerobiose , Nitratos/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Archaea/metabolismo , Archaea/genética , Archaea/fisiologia , Bactérias/metabolismo , Bactérias/genética , Eliminação de Resíduos Líquidos/métodos
4.
Bioprocess Biosyst Eng ; 47(3): 429-442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441647

RESUMO

Thauera is the most widely found dominant denitrifying genus in wastewater. In earlier study, MBBR augmented with a specially developed denitrifying five-membered bacterial consortium (DC5) where Thauera was found to be the most abundant and persistent genus. Therefore, to check the functional potential of Thauera in the removal of nitrate-containing wastewater in the present study Thauera sp.V14 one of the member of the consortium DC5 was used as the model organism. Thauera sp.V14 exhibited strong hydrophobicity, auto-aggregation ability, biofilm formation and denitrification ability, which indicated its robust adaptability short colonization and nitrate removal efficiency. Continuous reactor studies with Thauera sp.V14 in 10 L dMBBR showed 91% of denitrification efficiency with an initial nitrate concentration of 620 mg L-1 within 3 h of HRT. Thus, it revealed that Thauera can be employed as an effective microorganism for nitrate removal from wastewater based on its performance in the present studies.


Assuntos
Nitratos , Águas Residuárias , Thauera , Biofilmes , Desnitrificação , Reatores Biológicos/microbiologia , Nitrogênio
5.
J Environ Manage ; 351: 119672, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042072

RESUMO

Over the past few decades, the increase in dependency on healthcare facilities has led to the generation of large quantities of hospital wastewater (HWW) rich in chemical oxygen demand (COD), total suspended solids (TSS), ammonia, recalcitrant pharmaceutically active compounds (PhACs), and other disease-causing microorganisms. Conventional treatment methods often cannot effectively remove the PhACs present in wastewater. Hence, hybrid processes comprising of biological treatment and advanced oxidation processes have been used recently to treat complex wastewater. The current study explores the performance of pilot-scale treatment of real HWW (3000 L/d) spiked with carbamazepine (CBZ) using combinations of moving and stationary bed bio-reactor-sedimentation tank (MBSST), aerated horizontal flow constructed wetland (AHFCW), and photocatalysis. The combination of MBSST and AHFCW could remove 85% COD, 93% TSS, 99% ammonia, and 30% CBZ. However, when the effluent of the AHFCW was subjected to photocatalysis, an enhanced CBZ removal of around 85% was observed. Furthermore, the intermediate products (IPs) formed after the photocatalysis was also less toxic than the IPs formed during the biological processes. The results of this study indicated that the developed pilot-scale treatment unit supplemented with photocatalysis could be used effectively to treat HWW.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Amônia , Carbamazepina/análise , Análise da Demanda Biológica de Oxigênio , Hospitais
6.
J Environ Manage ; 367: 121943, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059308

RESUMO

In this work, a moving bed biofilm reactor (MBBR) was equipped for simultaneous biodegradation of CS2 and H2S. MBBR was started up and operated with different inlet concentrations and retention time; results indicated that approximately 81.9% CS2 and 93.9% H2S could be degraded, and the maximum elimination capacities of 209.3 g/(m3·h) and 138.5 g/(m3·h) were achieved for CS2 and H2S, respectively. The biodegradation mechanisms, including mass transfer, kinetics, and electron transfer, were then investigated. The mass transfer fraction and the maximum degradation rate per unit filter volume were calculated for evaluating the characteristics of mass transfer in MBBR. The variations of extracellular polymeric substances secretion, electron transport system activity and ATP enzyme activity showed that MBBR had an excellent performance for waste gas purification. Subsequently, the recovery of sulfur was explored via morphology, crystal structure, and generation kinetics, indicating that a modified Gompertz model could precisely describe the kinetics of sulfur recovery, and the product selectivity of 51.7% was achieved for sulfur. The microbial community analysis suggested that the dominant genera for biodegradation and sulfur recovery were Acidithiobacillus and Mycobacterium. Finally, MBBR system was validated for treatment of actual waste gas; results indicated that maximum elimination capacities of 134.1 g/(m3·h) and 117.1 g/(m3·h) were obtained for CS2 and H2S, respectively, suggesting that MBBR had the potential for application.


Assuntos
Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Dissulfeto de Carbono , Sulfeto de Hidrogênio , Enxofre , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo , Dissulfeto de Carbono/metabolismo , Cinética
7.
Environ Geochem Health ; 46(9): 333, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026137

RESUMO

Dye decolorization through biological treatment techniques has been gaining momentum as it is based on suspended and attached growth biomass in both batch and continuous modes. Hence, this review focused on the contribution of moving bed biofilm reactors (MBBR) in dye removal. MBBR have been demonstrated to be an excellent technology for pollution extraction, load shock resistance, and equipment size and energy consumption reduction. The review went further to highlight different biocarrier materials for biofilm development this review identified biochar as an innovative and environmentally friendly material produced through the application of different kinds of reusable or recyclable wastes and biowastes. Biochar as a carbonized waste biomass could be a better competitor and environmentally friendly substitute to activated carbon given its lower mass costs. Biochar can be easily produced particularly in rural locations where there is an abundance of biomass-based trash. Given that circular bioeconomy lowers dependency on natural resources by turning organic wastes into an array of useful products, biochar empowers the creation of competitive goods. Thus, biochar was identified as a novel, cost-effective, and long-term management strategy since it brings about several essential benefits, including food security, climate change mitigation, biodiversity preservation, and sustainability improvement. This review concludes that integrating two treatment methods could greatly lead to better color, organic matter, and nutrients removal than a single biological MBBR treatment process.


Assuntos
Biofilmes , Reatores Biológicos , Carvão Vegetal , Corantes , Carvão Vegetal/química , Corantes/química , Poluentes Químicos da Água , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos
8.
Environ Res ; 238(Pt 1): 117008, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669734

RESUMO

In recent years, Moving Bed Biofilm Reactors (MBBRs) have been preferred to conventional processes with suspended biomass. The main reason for this preference is that it can achieve better removal efficiencies than conventional systems with smaller footprints. However, unlocking the full potential of MBBRs in large-scale WWTPs remains challenging in real life. In this study, the performance of three different treatment technologies, Extended Aeration Activated Sludge (EAAS), Hybrid Fixed Bed Biofilm Reactor (HFBBR), and Hybrid Moving Bed Biofilm Reactor (HMBBR), was investigated over a year in a WWTP located in El-Gouna, Egypt. The COD removal efficiencies of the three systems were comparable, with the EAAS achieving 93.5%, HFBBR 94%, and HMBRR 95%. Nevertheless, the NH4 removal efficiency of the EAAS was slightly lower (97.5%) than that of the HFBBR and the HMBBR, that achieved a removal efficiency of 98%. BioWin Software was able to mimic the real case of the WWTP of El-Gouna and critically defined all plant limitations and operational data. Different simulations were modeled to test the hydraulic and organic loading capacities of the three systems under different scenarios and operating conditions. The HMBBR system failed to withstand the increase in organic load because of the biomass sloughing effect and subsequently high TSS loads in the settlers. Biomass sloughing overloaded the settlers and lead to biomass loss in the effluent. As the settleability of the HMBBR sludge was significantly lower than for the HFBBR the TSS loss in the effluent happened that much earlier that the moving carrier application had an adverse effect contradicting with the primary purpose of adding media carriers. Model simulations and data analysis findings were used to recommend the most suitable configuration for upgrading an existing system using the attached growth technique with all kinetic parameters and operational conditions. The recommended configuration focuses mainly on the separation of plastic media in a compartment with a very low hydraulic retention time to absorb the incoming shock load.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Egito , Reatores Biológicos , Biofilmes , Purificação da Água/métodos
9.
Environ Res ; 220: 115184, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586714

RESUMO

As a promising technology, the combination of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) with Anammox offers a solution to achieve effective and sustainable wastewater treatment. However, this sustainable process faces challenges to accumulate sufficient biomass for reaching practical nitrogen removal performance. This study developed an innovative membrane aerated moving bed biofilm reactor (MAMBBR), which supported sufficient methane supply and excellent biofilm attachment, for cultivating biofilms coupling n-DAMO with Anammox. Biofilms were developed rapidly on the polyurethane foam with the supply of ammonium and nitrate, achieving the bioreactor performance of 275 g N m-3 d-1 within 102 days. After the preservation at -20 °C for 8 months, the biofilm was successfully reactivated and achieved 315 g N m-3 d-1 after 188 days. After reactivation, MAMBBR was applied to treat synthetic sidestream wastewater. Up to 99.9% of total nitrogen was removed with the bioreactor performance of 4.0 kg N m-3 d-1. Microbial community analysis and mass balance calculation demonstrated that n-DAMO microorganisms and Anammox bacteria collectively contributed to nitrogen removal in MAMBBR. The MAMBBR developed in this study provides an ideal system of integrating n-DAMO with Anammox for sustainable wastewater treatment.


Assuntos
Compostos de Amônio , Nitratos , Desnitrificação , Metano , Nitrogênio , Oxidação Anaeróbia da Amônia , Anaerobiose , Reatores Biológicos/microbiologia , Oxirredução , Biofilmes
10.
J Environ Manage ; 343: 118211, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37253313

RESUMO

An integrated lab-scale wastewater treatment system consisting of an anaerobic Moving Bed Biofilm Reactor (AnMBBR) and an aerobic Membrane Bioreactor (AeMBR) in series was used to study the removal and fate of pharmaceuticals during wastewater treatment. Continuous-flow experiments were conducted applying different temperatures to the AnMBBR (Phase A: 35 °C; Phase B: 20 °C), while batch experiments were performed for calculating sorption and biotransformation kinetics. The total removal of major pollutants and target pharmaceuticals was not affected by the temperature of the AnMBBR. In Phase A, the average removal of dissolved chemical oxygen demand (COD), biological oxygen demand (BOD), and ammonium nitrogen (NH4-N) was 86%, 91% and 96% while in Phase B, 91%, 96% and 96%, respectively. Removal efficiencies ranging between 65% and 100% were observed for metronidazole (MTZ), trimethoprim (TMP), sulfamethoxazole (SMX), and valsartan (VAL), while slight (<30%) or no removal was observed for carbamazepine (CBZ) and diclofenac (DCF), respectively. Application of a mass balance model showed that the predominant mechanism for the removal of pharmaceuticals was biotransformation, while the role of sorption was of minor importance. The AeMBR was critical for VAL, SMX and TMP biodegradation; the elimination of MTZ was strongly enhanced by the AnMBBR. In both bioreactors, Bacteroidetes was the dominant phylum in both bioreactors over time. In the AnMBBR, Cloacibacterium and Bacteroides had a higher abundance in the biocarriers compared to the suspended biomass.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biofilmes , Anaerobiose , Reatores Biológicos/microbiologia , Sulfametoxazol , Trimetoprima , Eliminação de Resíduos Líquidos , Esgotos
11.
J Environ Manage ; 344: 118361, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348303

RESUMO

The use of bioreactor technology to treat industrial wastewater containing heavy metals has created new perspectives. Cadmium metal is one of the toxic heavy metals that have harmful effects on human health and the environment. This research work presents a comprehensive approach for aqueous cadmium removal through biosorption in a moving bed biofilm reactor (MBBR). The bacterium resistant to Cd(II) (350 mg/L) CdIW2 was selected among 8 cadmium tolerant bacteria isolated from the industrial wastewater of the metal industry. 16S rRNA gene and phenotypic analysis showed that the bacterium CdIW2 is similar to Serratia bozhouensis. The highest biosorption capacity of 65.79 mg/g was acquired in optimal conditions (30 min, pH = 6, 0.5 g/L, and 35 °C). The biosorption of the CdIW2 strain was consistent with the Langmuir isotherm and the pseudo-second order kinetic and showed the process's spontaneous thermodynamic and endothermic results. The removal rate 91.74% of MBBR in batch mode was obtained in 72 h and 10 mg/L of Cd(II). Furthermore, continuous mode bioreactor analysis has shown high efficiency at intel loading rates of 6-36 mg/L. day for cadmium removal. The second order kinetic (Grau) was chosen as the suitable model for modeling the MBBR process. Although several studies have evaluated the removal of various types of heavy metals, none of the studies involved the use of a metal-resistant strain in an MBBR bioreactor.


Assuntos
Cádmio , Metais Pesados , Humanos , Águas Residuárias , Serratia , Biofilmes , RNA Ribossômico 16S , Reatores Biológicos , Metais Pesados/análise , Concentração de Íons de Hidrogênio , Cinética , Adsorção
12.
Environ Geochem Health ; 45(9): 6823-6834, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36472682

RESUMO

A moving bed biofilm reactor (MBBR) process in wastewater treatment plants (WWTPs) uses plastic carriers, called biofilm carrier, to increase their treatment efficiency. Biofilm carrier is made up of plastic, containing the OPEs as flame retardants or plasticizers, so OPEs in biofilm carrier are possible to release from WWTPs to the river. This study investigated the effect of the MBBR process in WWTP on aquatic environments, focusing on OPEs. OPE eluted from the biofilm carrier by leaching test was tris(2-chloroethyl) phosphate (TCEP), and the concentration of the effluent compared to the influent was increased in the WWTP of the MBBR process. 3609 mg/day of TCEP would be discharged into the water using the second-order model with rate constant [Formula: see text] = 0.000451 (ng L-1)-1 h-1, which is the most suitable for the leaching concentration of TCEP. It was identified that TCEP in biofilm carrier was transformed into oxidative dechlorinated compounds and oxidative compounds by microorganisms in the bioreactor. As a result of the study, it was confirmed that not only TCEP but also transformation products of TCEP emitted into the water from the MBBR process of WWTP.


Assuntos
Biofilmes , Retardadores de Chama , Reatores Biológicos , China , Ésteres , Retardadores de Chama/análise , Organofosfatos , Plásticos , Água
13.
Korean J Chem Eng ; 40(6): 1389-1400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325271

RESUMO

Performance of an anaerobic moving bed biofilm reactor (AnMBBR) was evaluated for pretreatment of real textile desizing wastewater at organic loading rate (OLR) of 1±0.05 to 6.3±0.37 kgCOD/m3/d. After OLR optimization, the performance of AnMBBR was evaluated for biodegradation of reactive dyes. AnMBBR was operated under a mesophilic temperature range of 30 to 36 °C, while the oxidation-reduction potential (ORP) and pH were in the range of 504 to 594 (-mV) and 6.98 to 7.28, respectively. By increasing the OLR from 1±0.05 to 6.3±0.37 kgCOD/m3/d, COD and BOD5 removal was decreased from 84 to 39% and 89 to 49%, respectively. While the production of biogas was increased from 0.12 to 0.83 L/L·d up to an optimum OLR of 4.9±0.43 kgCOD/m3/d. With increase in the dye concentration in the feed, COD, BOD5, color removal and biogas production reduced from 56, 63, 70% and 0.65 L/L·d to 34, 43, 41% and 0.08 L/L·d, respectively. Based on the data obtained, a cost-benefit analysis of AnMBBR was also investigated for the pretreatment of real textile desizing wastewater. Cost estimation of anaerobic pretreatment of textile desizing wastewater indicated a net profit of 21.09 million PKR/yr (114,000 €/yr) and a potential payback period of 2.54 years.

14.
Environ Sci Technol ; 56(18): 13338-13346, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36047990

RESUMO

The recent discovery of comammox (complete ammonia oxidation) Nitrospira has upended the long-held nitrification paradigm. Although comammox Nitrospira have been identified in wastewater treatment systems, the conditions for their dominance over canonical ammonia oxidizers remain unclear. Here, we report the dominance of comammox Nitrospira in a moving bed biofilm reactor (MBBR) fed with synthetic mainstream wastewater. Integrated 16S rRNA gene amplicon sequencing, fluorescence in situ hybridization (FISH), and metagenomic sequencing methods demonstrated the selective enrichment of comammox bacteria when the MBBR was operated at a dissolved oxygen (DO) concentration above 6 mg O2/L. The dominance of comammox Nitrospira over canonical ammonia oxidizers (i.e., Nitrosomonas) was attributed to the low residual ammonium concentration (0.02-0.52 mg N/L) formed in the high-DO MBBR. Two clade A comammox Nitrospira were identified, which are phylogenetically close to Candidatus Nitrospira nitrosa. Interestingly, cryosectioning-FISH showed these two comammox species spatially distributed on the surface of the biofilm. Moreover, the ammonia-oxidizing activity of comammox Nitrospira-dominated biofilms was susceptible to the oxygen supply, which dropped by half with the DO concentration decrease from 6 to 2 mg O2/L. These features collectively suggest a low apparent oxygen affinity for the comammox Nitrospira-dominated biofilms in the high-DO nitrifying MBBR.


Assuntos
Amônia , Compostos de Amônio , Bactérias/genética , Biofilmes , Reatores Biológicos , Hibridização in Situ Fluorescente , Nitrificação , Oxirredução , Oxigênio , Filogenia , RNA Ribossômico 16S/genética , Águas Residuárias/microbiologia
15.
Environ Res ; 215(Pt 1): 114159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36027959

RESUMO

Quorum sensing (QS) signaling plays a significant role in the natural regulation of biofilm formation. Multiple species QS systems in wastewater treatment processes have received significant attention in recent years and this study presents a long-term analysis of QS signaling, bacterial structures and extracellular polymeric substance (EPS) during biofilm formation, detachment and reformation processes. Six types of Acyl homoserine lactones (AHLs) were found to be closely related to different phases of biofilm development, with both QS and quorum quenching (QQ) strains being identified as drivers of various biofilm phases and 10 strains presenting a close relationship with AHLs (p < 0.05). Meanwhile, QS strain Sphingomonas rubra was immobilized and added into reactor systems, resulting in significant increase in AHL content, EPS production, and adhesion strength of biofilm (p < 0.05), which might promote biofilm formation processes during long-term stable operation. This study provides a potentially simple and economical way to improve activity and stability of MBBR in complex wastewater systems.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Biofilmes , Reatores Biológicos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
16.
J Environ Manage ; 315: 115162, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561462

RESUMO

Extensive growth of industries leads to uncontrolled ammonia releases to environment. This can result in significant degradation of the aquatic ecology as well as significant health concerns for humans. Knowing the mechanism of ammonia elimination is the simplest approach to comprehending it. Ammonia has been commonly converted to less hazardous substances either in the form of nitrate or nitrogen gas. Ammonia has been converted into nitrite by ammonia-oxidizing bacteria and further reduced to nitrate by nitrite-oxidizing bacteria in aerobic conditions. Denitrification takes place in an anoxic phase and nitrate is converted into nitrogen gas. It is challenging to remove ammonia by employing technologies that do not incur particularly high costs. Thus, this review paper is focused on biofilm reactors that utilize the nitrification process. Many research publications and patents on biofilm wastewater treatment have been published. However, only a tiny percentage of these projects are for full-scale applications, and the majority of the work was completed within the last few decades. The physicochemical approaches such as ammonia adsorption, coagulation-flocculation, and membrane separation, as well as conventional biological treatments including activated sludge, microalgae, and bacteria biofilm, are briefly addressed in this review paper. The effectiveness of biofilm reactors in removing ammonia was compared, and the microbes that effectively remove ammonia were thoroughly discussed. Overall, biofilm reactors can remove up to 99.7% ammonia from streams with a concentration in range of 16-900 mg/L. As many challenges were identified for ammonia removal using biofilm at a commercial scale, this study offers future perspectives on how to address the most pressing biofilm issues. This review may also improve our understanding of biofilm technologies for the removal of ammonia as well as polishing unit in wastewater treatment plants for the water reuse and recycling, supporting the circular economy concept.


Assuntos
Amônia , Desnitrificação , Amônia/metabolismo , Bactérias/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Humanos , Nitratos/metabolismo , Nitrificação , Nitritos , Nitrogênio/metabolismo , Águas Residuárias/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-36097952

RESUMO

Conventional activated sludge (AS) systems are widely used to treat domestic sewage worldwide. However, the removal of nitrogen in the AS system is limited, and its concentration in the effluent exceeds the recommended values in the discharge standards. In this study, a pilot experiment was conducted to improve nitrogen removal during municipal sewage treatment by operating AS and anaerobic-aerobic (AO) systems under low dissolved oxygen (DO) conditions of less than 0.5 mg L-1 and by adding denitrifying granular sludge. The low DO operation of the AS and AO systems led to the sludge washout and increased the organic content and ammonia and nitrate concentration of the effluent. In contrast, the nitrate concentrations of the effluents produced by the AS and AO systems were 9.4 ± 3.6 and 8.4 ± 0.7 mg-N L-1, respectively, indicated that denitrifying granular sludge addition enhanced denitrification during sewage treatment. The total nitrogen (TN) removal efficiency increased by 13% and 9% for the AS and AO systems despite a decrease in the temperature of 6 °C for the water in the aeration tank. Thus, adding denitrifying granular sludge to the aeration tank is a simple and effective approach to improve organic and nitrogen removal during wastewater treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Amônia , Anaerobiose , Reatores Biológicos , Desnitrificação , Nitratos , Nitrificação , Nitrogênio , Oxigênio , Águas Residuárias , Água
18.
Environ Sci Technol ; 55(12): 8287-8298, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086451

RESUMO

Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.


Assuntos
Nitratos , Nitrificação , Amônia , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitrogênio
19.
World J Microbiol Biotechnol ; 37(4): 68, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33748870

RESUMO

Biological denitrification is the most promising alternative approach for the removal of nitrate from wastewater. MBBR inoculated with activated sludge is a widely studied approach, but very few studies have focused on the bioaugmentation of biofilm forming bacteria in MBBR. Our study revealed that the use of special microbial seed of biofilm forming denitrifying bacteria Diaphorobacter sp. R4, Pannonibacter sp. V5, Thauera sp. V9, Pseudomonas sp.V11, and Thauera sp.V14 to form biofilm on carriers enhanced nitrate removal performance of developed MBBR. Various process parameters C/N ratio 0.3, HRT 3 h at Nitrate loading 2400 mg L-1, Filling ratio 20%, operated with Pall ring carrier were optimized to achieve highest nitrate removal. After 300 days of continuous operation results of whole genome metagenomic studies showed that Thauera spp. were the most dominant and key contributor to the denitrification of nitrate containing wastewater and the reactor was totally conditioned for denitrification. Overall, findings suggest that bench-scale MBBR developed with biofilm forming denitrifying microbial seed accelerated the denitrification process; therefore in conclusion it is suggested as one of the best suitable and effective approach for removal of nitrate from wastewater.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Desnitrificação , Nitratos/metabolismo , Amiloide/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Benzotiazóis , Cinética , Nitrogênio/metabolismo , Pseudomonas , Esgotos , Águas Residuárias , Purificação da Água
20.
Bioprocess Biosyst Eng ; 43(7): 1241-1252, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32166398

RESUMO

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7-5.1 in the influent. Simultaneous nitrification-denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6-97.4% and 34.4-60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4-6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12-29.33%), Burkholderiales (2.15-21.38%), and Sphingobacteriales (2.92-11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.


Assuntos
Reatores Biológicos , Carbono/isolamento & purificação , Microbiota , Nitrogênio/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Biofilmes , Carbono/química , DNA Bacteriano/isolamento & purificação , Nitrogênio/química , Oxigênio/química , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa