Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294408

RESUMO

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Assuntos
Acetilcolina/imunologia , Proteínas de Bactérias/farmacologia , Cílios/imunologia , Depuração Mucociliar/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Canais de Cátion TRPM/imunologia , Traqueia/imunologia , Acetilcolina/metabolismo , Animais , Proteínas de Bactérias/imunologia , Transporte Biológico , Cílios/efeitos dos fármacos , Cílios/metabolismo , Feminino , Formiatos/metabolismo , Expressão Gênica , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Optogenética/métodos , Comunicação Parácrina/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Papilas Gustativas/imunologia , Papilas Gustativas/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/patologia , Virulência
2.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316902

RESUMO

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Assuntos
Corpos Basais , Citoesqueleto , Camundongos , Animais , Microtúbulos , Cílios , Células Epiteliais
3.
Artigo em Inglês | MEDLINE | ID: mdl-38691660

RESUMO

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

4.
Artigo em Inglês | MEDLINE | ID: mdl-39104315

RESUMO

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study. Using murine tracheal tissue culture and in vitro influenza A virus (IAV) infection models, we analyzed cilia-driven flow and ciliary beat frequency (CBF) in the airway epithelium to evaluate MCC. Short-term IAV infection increased cilia-driven flow and CBF in control mice, but not in high-fat diet-induced obese mice. Basal cilia-driven flow and CBF were also lower in obese mice than in control mice. Mechanistically, the increase of extracellular adenosine triphosphate (ATP) release during IAV infection, which was observed in the control mice, was abolished in the obese mice, although the addition of ATP increased cilia-driven flow and CBF both in control and obese mice to a similar extent. Additionally, RNA sequencing and reverse transcription-polymerase chain reaction revealed the downregulation of several cilia-related genes, including Dnah1, Dnal1, Armc4, and Ttc12 (the dynein-related genes); Ulk4 (the polychaete differentiation gene); Cep164 (the ciliogenesis and intraflagellar transport gene); Rsph4a, Cfap206, and Ppil6 (the radial spoke structure and assembly gene); and Drc3(the nexin-dynein regulatory complex genes) in obese murine tracheal tissues compared to their control levels. In conclusion, our studies demonstrate that obesity attenuates MCC under basal conditions and during IAV infection by downregulating the expression of cilia-related genes and suppressing the release of extracellular ATP, thereby increasing the susceptibility and severity of IAV infection.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39104314

RESUMO

Cystic fibrosis is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to limited accessibility of the small airways with the current single photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga] tagged macro-aggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down few minutes after delivery. Cystic fibrosis pig small airways cleared significantly less than non-CF pig small airways (non-CF 25.1±3.1% vs. CF 14.6±0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue UTP further impaired clearance (non-CF with UTP 20.9±0.3% vs. CF with UTP 13.0±1.8%). None of the cystic fibrosis pig treated with UTP (N = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.

6.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364346

RESUMO

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Assuntos
Lesão Pulmonar , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Lesão Pulmonar/metabolismo , Mucosa Respiratória , Material Particulado/metabolismo , Células Epiteliais , Epitélio
7.
J Allergy Clin Immunol ; 152(2): 538-550, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36638921

RESUMO

BACKGROUND: Job syndrome is a disease of autosomal dominant hyper-IgE syndrome (AD-HIES). Patients harboring STAT3 mutation are particularly prone to airway remodeling and airway infections. OBJECTIVES: Airway epithelial cells play a central role as the first line of defense against pathogenic infection and express high levels of STAT3. This study thus interrogates how AD-HIES STAT3 mutations impact the physiological functions of airway epithelial cells. METHODS: This study created human airway basal cells expressing 4 common AD-HIES STAT3 mutants (R382W, V463del, V637M, and Y657S). In addition, primary airway epithelial cells were isolated from a patient with Job syndrome who was harboring a STAT3-S560del mutation and from mice harboring a STAT3-V463del mutation. Cell proliferation, differentiation, barrier function, bacterial elimination, and innate immune responses to pathogenic infection were quantitatively analyzed. RESULTS: STAT3 mutations reduce STAT3 protein phosphorylation, nuclear translocation, transcription activity, and protein stability in airway basal cells. As a consequence, STAT3-mutated airway basal cells give rise to airway epithelial cells with abnormal cellular composition and loss of coordinated mucociliary clearance. Notably, AD-HIES STAT3 airway epithelial cells are defective in bacterial killing and fail to initiate vigorous proinflammatory responses and neutrophil transepithelial migration in response to an experimental model of Pseudomonas aeruginosa infection. CONCLUSIONS: AD-HIES STAT3 mutations confer numerous abnormalities to airway epithelial cells in cell differentiation and host innate immunity, emphasizing their involvement in the pathogenesis of lung complications in Job syndrome. Therefore, therapies must address the epithelial defects as well as the previously noted immune cell defects to alleviate chronic infections in patients with Job syndrome.


Assuntos
Síndrome de Job , Humanos , Camundongos , Animais , Síndrome de Job/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Mutação
8.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847709

RESUMO

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Assuntos
Pneumopatias , Depuração Mucociliar , Camundongos , Humanos , Animais , Depuração Mucociliar/fisiologia , Sistema Respiratório/metabolismo , Muco/metabolismo , Pneumopatias/metabolismo , Camundongos Knockout
9.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L557-L570, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852921

RESUMO

Electronic cigarettes (e-cigs) are often promoted as safe alternatives to smoking based on the faulty perception that inhaling nicotine is safe until other harmful chemicals in cigarette smoke are absent. Previously, others and we have reported that, similar to cigarette smoke, e-cig aerosols decrease CFTR-mediated ion transport across airway epithelium. However, it is unclear whether such defective epithelial ion transport by e-cig aerosols occurs in vivo and what the singular contribution of inhaled nicotine is to impairments in mucociliary clearance (MCC), the primary physiologic defense of the airways. Here, we tested the effects of nicotine aerosols from e-cigs in primary human bronchial epithelial (HBE) cells and two animal models, rats and ferrets, known for their increasing physiologic complexity and potential for clinical translation, followed by in vitro and in vivo electrophysiologic assays for CFTR activity and micro-optical coherence tomography (µOCT) image analyses for alterations in airway mucus physiology. Data presented in this report indicate nicotine in e-cig aerosols causes 1) reduced CFTR and epithelial Na+ channel (ENaC)-mediated ion transport, 2) delayed MCC, and 3) diminished airway surface hydration, as determined by periciliary liquid depth analysis. Interestingly, the common e-cig vehicles vegetable glycerin and propylene glycol did not affect CFTR function or MCC in vivo despite their significant adverse effects in vitro. Overall, our studies contribute to an improved understanding of inhaled nicotine effects on lung health among e-cig users and inform pathologic mechanisms involved in altered host defense and increased risk for tobacco-associated lung diseases.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Humanos , Ratos , Nicotina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística , Depuração Mucociliar , Furões , Aerossóis e Gotículas Respiratórios , Pulmão , Aerossóis
10.
Respir Res ; 24(1): 267, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925434

RESUMO

BACKGROUND: Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS: We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS: Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS: We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.


Assuntos
Depuração Mucociliar , Traqueia , Humanos , Camundongos , Animais , Traqueia/fisiologia , Transdução de Sinais , Paladar , Colinérgicos/metabolismo
11.
Cell Commun Signal ; 21(1): 306, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904180

RESUMO

Chronic rhinosinusitis (CRS) is a pathological condition characterized by persistent inflammation in the upper respiratory tract and paranasal sinuses. The epithelium serves as the first line of defense against potential threats and protects the nasal mucosa. The fundamental mechanical barrier is formed by the cell-cell contact and mucociliary clearance (MCC) systems. The physical-mechanical barrier is comprised of many cellular structures, including adhesion junctions and tight junctions (TJs). To this end, different factors, such as the dysfunction of MCC, destruction of epithelial barriers, and tissue remodeling, are related to the onset and development of CRS. Recently published studies reported the critical role of different microorganisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, in the induction of the mentioned factors. Bacteria could result in diminished ciliary stimulation capacity, and enhance the chance of CRS by reducing basal ciliary beat frequency. Additionally, bacterial exoproteins have been demonstrated to disrupt the epithelial barrier and induce downregulation of transmembrane proteins such as occludin, claudin, and tricellulin. Moreover, bacteria exert an influence on TJ proteins, leading to an increase in the permeability of polarized epithelial cells. Noteworthy, it is evident that the activation of TLR2 by staphylococcal enterotoxin can potentially undermine the structural integrity of TJs and the epithelial barrier through the induction of pro-inflammatory cytokines. The purpose of this article is an attempt to investigate the possible role of the most important microorganisms associated with CRS and their pathogenic mechanisms against mucosal surfaces and epithelial barriers in the paranasal sinuses. Video Abstract.


Assuntos
Pseudomonas aeruginosa , Sinusite , Humanos , Staphylococcus aureus , Depuração Mucociliar , Sinusite/microbiologia , Sinusite/patologia , Mucosa Nasal/metabolismo , Mucosa Nasal/microbiologia , Mucosa Nasal/patologia , Junções Íntimas , Bactérias , Doença Crônica
12.
Am J Respir Crit Care Med ; 205(7): 761-768, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023825

RESUMO

Rationale: Mucin homeostasis is fundamental to airway health. Upregulation of airway mucus glycoprotein MUC5B is observed in diverse common lung diseases and represents a potential therapeutic target. In mice, Muc5b is required for mucociliary clearance and for controlling inflammation after microbial exposure. The consequences of its loss in humans are unclear. Objectives: The goal of this study was to identify and characterize a family with congenital absence of MUC5B protein. Methods: We performed whole-genome sequencing in an adult proband with unexplained bronchiectasis, impaired pulmonary function, and repeated Staphylococcus aureus infection. Deep phenotyping over a 12-year period included assessments of pulmonary radioaerosol mucociliary clearance. Genotyping with reverse phenotyping was organized for eight family members. Extensive experiments, including immunofluorescence staining and mass spectrometry for mucins, were performed across accessible sample types. Measurements and Main Results: The proband, and her symptomatic sibling who also had extensive sinus disease with nasal polyps, were homozygous for a novel splicing variant in the MUC5B gene (NM_002458.2: c.1938 + 1G>A). MUC5B was absent from saliva, sputum, and nasal samples. Mucociliary clearance was impaired in the proband, and large numbers of apoptotic macrophages were present in sputum. Three siblings heterozygous for the familial MUC5B variant were asymptomatic but had a shared pattern of mild lung function impairments. Conclusions: Congenital absence of MUC5B defines a new category of genetic respiratory disease. The human phenotype is highly concordant with that of the Muc5b-/- murine model. Further study of individuals with decreased MUC5B production could provide unique mechanistic insights into airway mucus biology.


Assuntos
Pneumopatias , Mucinas , Adulto , Animais , Feminino , Humanos , Pulmão/metabolismo , Pneumopatias/metabolismo , Camundongos , Mucina-5AC/genética , Mucina-5B/genética , Mucinas/metabolismo , Depuração Mucociliar/genética , Muco/metabolismo
13.
Eur Arch Otorhinolaryngol ; 280(5): 2359-2364, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36854810

RESUMO

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) is a renal disease with genetic transmisson. Mutations in the PKD1 and PKD2 genes, which encode integral membrane proteins of the cilia of primary renal tubule epithelial cells, are seen in ADPKD. The aim of this study was to evaluate the sinonasal epithelium, which is epithelium with cilia, by measuring the nasal mucociliary clearance time, and to investigate the effect of ADPKD on nasal mucociliary clearance. METHODS: The study included 34 patients, selected from patients followed up in the Nephrology Clinic, and 34 age and gender-matched control group subjects. The nasal mucociliary clearance time (NMCT) was measured with the saccharin test. RESULTS: The mean age of the study subjects was 47.15 ± 14.16 years in the patient group and 47.65 ± 13.85 years in the control group. The eGFR rate was determined as mean 72.06 ± 34.26 mL/min in the patient group and 99.79 ± 17.22 mL/min in the control group (p < 0.001). The NMCT was determined to be statistically significantly longer in the patient group (903.6 ± 487.8 s) than in the control group (580 ± 259 s) (p = 0.006). CONCLUSIONS: The study results showed that the NMCT was statistically significantly longer in patients with ADPKD compared to the control group, but in the linear regression analysis results, no correlation was determined between eGFR and NMCT.


Assuntos
Depuração Mucociliar , Nariz , Rim Policístico Autossômico Dominante , Adulto , Humanos , Pessoa de Meia-Idade , Depuração Mucociliar/fisiologia , Mutação , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Sacarina , Canais de Cátion TRPP/genética , Proteínas de Membrana/genética , Seios Paranasais/fisiopatologia , Mucosa Nasal/fisiopatologia , Nariz/fisiopatologia
14.
Comput Chem Eng ; 1792023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946856

RESUMO

Delivery of aerosols to the lung can treat various lung diseases. However, the conducting airways are coated by a protective mucus layer with complex properties that make this form of delivery difficult. Mucus is a non-Newtonian fluid and is cleared from the lungs over time by ciliated cells. Further, its gel-like structure hinders the diffusion of particles through it. Any aerosolized treatment of lung diseases must penetrate the mucosal barrier. Using computational fluid dynamics, a model of the airway mucus and periciliary layer was constructed to simulate the transport of impacted aerosol particles. The model predicts the dosage fraction of particles of a certain size that penetrate the mucus and reach the underlying tissue, as well as the distance downstream of the dosage site where tissue concentration is maximized. Reactions that may occur in the mucus are also considered, with simulated data for the interaction of a model virus and an antibody.

15.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569753

RESUMO

Chronic rhinosinusitis (CRS) with (CRSwNP) or without (CRSsNP) nasal polyps is a prevalent and heterogeneous disorder existing as a spectrum of clinical conditions with complex underlying pathomechanisms. CRS comprises a broad syndrome characterized by multiple immunological features involving complex interactions between the genes, the microbiome, host- and microbiota-derived exosomes, the epithelial barrier, and environmental and micromilieu exposures. The main pathophysiological feature is an epithelial barrier disruption, accompanied by microbiome alterations and unpredictable and multifactorial immunologic overreactions. Extrinsic pathogens and irritants interact with multiple epithelial receptors, which show distinct expression patterns, activate numerous signaling pathways, and lead to diverse antipathogen responses. CRSsNP is mainly characterized by fibrosis and mild inflammation and is often associated with Th1 or Th17 immunological profiles. CRSwNP appears to be associated with moderate or severe type 2 (T2) or Th2 eosinophilic inflammation. The diagnosis is based on clinical, endoscopic, and imaging findings. Possible CRS biomarkers from the peripheral blood, nasal secretions, tissue biopsies, and nasally exhaled air are studied to subgroup different CRS endotypes. The primary goal of CRS management is to maintain clinical control by nasal douching with isotonic or hypertonic saline solutions, administration of nasal and systemic steroids, antibiotics, biologic agents, or, in persistent and more severe cases, appropriate surgical procedures.

16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 275-284, 2023 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36999475

RESUMO

Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system, which is mediated by the actions of airway and submucosal gland epithelial cells, plays a critical role in a multilayered defense system via secreting fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces. Changes in environment, drugs or diseases can lead to mucus overproduction and cilia dysfunction, which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases, such as primary ciliary dysfunction, cystic fibrosis, asthma and chronic obstructive pulmonary disease, which are characterized by goblet cell metaplasia, submucosal gland cell hypertrophy, mucus hypersecretion, cilia adhesion, lodging and loss, and airway obstruction.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Doenças Respiratórias , Humanos , Depuração Mucociliar , Doença Pulmonar Obstrutiva Crônica/metabolismo , Muco/metabolismo , Pulmão , Sistema Respiratório
17.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098422

RESUMO

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Assuntos
Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Ratos , Ovinos , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Amilorida/farmacologia , Depuração Mucociliar/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/tratamento farmacológico , Mucosa Respiratória
18.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30665704

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Assuntos
Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Proteínas dos Microfilamentos/deficiência , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas de Xenopus/deficiência , Animais , Transtornos da Motilidade Ciliar/patologia , Modelos Animais de Doenças , Éxons/genética , Feminino , Deleção de Genes , Genes Letais , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Rotação , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genética
19.
Eur Biophys J ; 51(1): 51-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35072746

RESUMO

Collectively coordinated ciliary activity propels the airway mucus, which lines the luminal surface of the vertebrate respiratory system, in cranial direction. Our contemporary understanding on how the quantitative characteristics of the metachronal wave field determines the resulting mucociliary transport is still limited, partly due to the sparse availability of quantitative observational data. We employed high-speed video reflection microscopy to image and quantitatively characterize the metachronal wave field as well as the mucociliary transport in excised bovine, porcine, ovine, lapine, turkey and ostrich samples. Image processing techniques were used to determine the ciliary beating frequency (CBF), the velocity and wavelength of the metachronal wave and the mucociliary transport velocity. The transport direction was found to strongly correlate with the mean wave propagation direction in all six species. The CBF yielded similar values (10-15 Hz) for all six species. Birds were found to exhibit higher transport speeds (130-260 [Formula: see text]m/s) than mammals (20-80 [Formula: see text]m/s). While the average transport direction significantly deviates from the tracheal long axis in mammals, no significant deviation was found in birds. The metachronal waves were found to propagate at about 4-8 times the speed of mucociliary transport in mammals, whereas in birds they propagate at about the transport speed. The mucociliary transport in birds is fast and roughly follows the TLA, whereas the transport is slower and proceeds along a left-handed spiral in mammals. The longer wavelengths and the lower ratio between the metachronal wave speed and the mucociliary transport speed provide evidence that the mucociliary clearance mechanism operates differently in birds than in mammals.


Assuntos
Cílios , Depuração Mucociliar , Animais , Bovinos , Processamento de Imagem Assistida por Computador , Ovinos , Suínos , Traqueia
20.
Cell Mol Life Sci ; 78(3): 769-797, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32915243

RESUMO

Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.


Assuntos
Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Axonema/metabolismo , Cílios/genética , Transtornos da Motilidade Ciliar/patologia , Modelos Animais de Doenças , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa