Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35062650

RESUMO

We established a web-based ubiquitous health management (UHM) system, "ECG4UHM", for processing ECG signals with AI-enabled models to recognize hybrid arrhythmia patterns, including atrial premature atrial complex (APC), atrial fibrillation (AFib), ventricular premature complex (VPC), and ventricular tachycardia (VT), versus normal sinus rhythm (NSR). The analytical model coupled machine learning methods, such as multiple layer perceptron (MLP), random forest (RF), support vector machine (SVM), and naive Bayes (NB), to process the hybrid patterns of four arrhythmia symptoms for AI computation. The data pre-processing used Hilbert-Huang transform (HHT) with empirical mode decomposition to calculate ECGs' intrinsic mode functions (IMFs). The area centroids of the IMFs' marginal Hilbert spectrum were suggested as the HHT-based features. We engaged the MATLABTM compiler and runtime server in the ECG4UHM to build the recognition modules for driving AI computation to identify the arrhythmia symptoms. The modeling extracted the crucial data sets from the MIT-BIH arrhythmia open database. The validated models, including the premature pattern (i.e., APC-VPC) and the fibril-rapid pattern (i.e., AFib-VT) against NSR, could reach the best area under the curve (AUC) of the receiver operating characteristic (ROC) of approximately 0.99. The models for all hybrid patterns, without VPC versus AFib and VT, achieved an average accuracy of approximately 90%. With the prediction test, the respective AUCs of the NSR and APC versus the AFib, VPC, and VT were 0.94 and 0.93 for the RF and SVM on average. The average accuracy and the AUC of the MLP, RF, and SVM models for APC-VT reached the value of 0.98. The self-developed system with AI computation modeling can be the backend of the intelligent social-health system that can recognize hybrid arrhythmia patterns in the UHM and home-isolated cares.


Assuntos
Fibrilação Atrial , Processamento de Sinais Assistido por Computador , Algoritmos , Teorema de Bayes , Eletrocardiografia , Humanos , Máquina de Vetores de Suporte
2.
Sensors (Basel) ; 18(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895771

RESUMO

In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa