Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Appl Toxicol ; 44(9): 1388-1402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38760888

RESUMO

Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.


Assuntos
Cisplatino , Flavonoides , Proteínas de Transporte de Cátions Orgânicos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Animais , Flavonoides/farmacologia , Cisplatino/toxicidade , Cisplatino/efeitos adversos , Interações Ervas-Drogas , Masculino , Cães , Células Madin Darby de Rim Canino , Camundongos , Rim/efeitos dos fármacos , Rim/metabolismo , Interações Alimento-Droga , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo
2.
Pharmacol Res ; 196: 106941, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37775020

RESUMO

Solute carrier (SLC) transport proteins are fundamental for the translocation of endogenous compounds and drugs across membranes, thus playing a critical role in disease susceptibility and drug response. Because only a limited number of transporter substrates are currently known, the function of a large number of SLC transporters is elusive. Here, we describe the proof-of-concept of a novel strategy to identify SLC transporter substrates exemplarily for the proton-coupled peptide transporter (PEPT) 2 (SLC15A2) and multidrug and toxin extrusion (MATE) 1 transporter (SLC47A1), which are important renal transporters of drug reabsorption and excretion, respectively. By combining metabolomic profiling of mice with genetically-disrupted transporters, in silico ligand screening and in vitro transport studies for experimental validation, we identified nucleobases and nucleoside-derived anticancer and antiviral agents (flucytosine, cytarabine, gemcitabine, capecitabine) as novel drug substrates of the MATE1 transporter. Our data confirms the successful applicability of this new approach for the identification of transporter substrates in general, which may prove particularly relevant in drug research.


Assuntos
Proteínas de Membrana Transportadoras , Proteínas Carreadoras de Solutos , Animais , Camundongos , Ligantes , Transporte Biológico
3.
Xenobiotica ; 52(9-11): 997-1009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170033

RESUMO

Mirogabalin is a α2δ ligand as well as pregabalin. The aim of this study was to clarify whether mirogabalin is a substrate of human LAT1, which involved in absorption and disposition of pregabalin, and to investigate transporters involved in renal secretion and absorption of mirogabalin using transporter-expressing cells and fresh human kidney slices.We employed uptake assay of [3H]mirogabalin by HEK293T or HEK293 cells transiently overexpress human OAT1, OAT3, OCT2, LAT1/4F2hc, LAT2/4F2hc, PEPT1, and PEPT2 proteins. Transport assay of MDCKII cells transiently overexpress OCT2/MATE1, and OCT2/MATE2-K proteins was conducted. Contribution of transporters to renal secretion was investigated by uptake assay using human kidney slices.Uptake clearances of [3H]mirogabalin by OAT1-, OAT3-, OCT2-, PEPT1-, and PEPT2-expressing cells were higher than that by vector cells, but by LAT1/4F2hc and LAT2/4F2hc-expressing cells were not. In transport assay using OCT2/MATE1 and OCT2/MATE2-K cells, [3H]mirogabalin showed directional transport from basolateral to apical side. Contribution of OAT1, OAT3, and OCT2 was observed by uptake of [3H]mirogabalin into the kidney slices.These results indicate that mirogabalin is not a substrate of LAT1, but of PEPT1 and PEPT2 involved in absorption and of OAT1, OAT3, OCT2, MATE1 and/or MATE2-K involved in its urinary secretion.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Células HEK293 , Ligantes , Pregabalina , Transportador 2 de Cátion Orgânico/metabolismo
4.
Pharm Res ; 35(1): 14, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302757

RESUMO

PURPOSE: Lamivudine, a characterized substrate for human multidrug and toxin extrusion protein 1 (hMATE1) in vitro, was commonly used with indinavir as a therapy against human immunodeficiency virus (HIV). We aimed to investigate whether mouse MATE1 is involved in the disposition of lamivudine in vivo, and whether there is any transporter-mediated interaction between indinavir and lamivudine. METHODS: The role of MATE1 in the disposition of lamivudine was determined using Mate1 wild type (+/+) and knockout (-/-) mice. The inhibitory potencies of indinavir on lamivudine uptake mediated by OCT2 and MATE1 were determined in human embryonic kidney 293 (HEK 293) cells stably expressing these transporters. The role of MATE1 in the interaction between indinavir and lamivudine in vivo was determined using Mate1 (+/+) and Mate1 (-/-) mice. RESULTS: The plasma concentrations and tissue accumulation of lamivudine were markedly elevated in Mate1 (-/-) mice as compared to those in Mate1 (+/+) mice. Indinavir significantly increased the pharmacokinetic exposure of lamivudine in mice; however, the effect by indinavir was significantly less pronounced in Mate1 (-/-) mice as compared to Mate1(+/+) mice. CONCLUSION: MATE1 played an important role in lamivudine pharmacokinetics. Indinavir could cause drug-drug interaction with lamivudine in vivo via inhibition of MATE1 and additional mechanism.


Assuntos
HIV-1/efeitos dos fármacos , Indinavir/química , Lamivudina/química , Lamivudina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Transporte Biológico/efeitos dos fármacos , Técnicas de Cultura de Células , Interações Medicamentosas , Células HEK293 , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual
5.
Phytother Res ; 32(6): 1004-1013, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29480578

RESUMO

The synergistic activity of Houttuynia cordata ethanol extract (HCT) and metformin combination in diabetic rats has been previously reported, but the fundamental causes remain unsolved. Organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) transport metformin to the liver and kidneys. Therefore, pharmacological activity and systemic exposure of metformin in HCT-metformin combination were determined from pharmacokinetic change and glucose-lowering activity using in vitro HEK-293 cells expressing human OCTs or human MATEs and in vivo rats. HCT inhibited human OCT2 and human MATE1-mediated metformin transports in vitro. In in vivo rats, treatment with HCT and metformin for 28 days in rats (28MH rats) reduced the rat Oct2-mediated renal excretion of metformin and thereby the increased systemic exposure of metformin compared with only metformin-treated rats for 28 days (28M rats). In 28MH rats, rat Oct1-mediated metformin uptake into the liver was enhanced, leading to an improved glucose-lowering effect without hypoglycaemia compared with 28M rats. There was no impairment of renal function in HCT and metformin treatments. These results suggest that HCT-metformin combination therapy is applicable in terms of efficacy and safety.


Assuntos
Antiporters/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Metformina/uso terapêutico , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Houttuynia , Humanos , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Ratos , Ratos Sprague-Dawley
6.
Toxicol Appl Pharmacol ; 314: 55-62, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871888

RESUMO

Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd2+). In this study, we aimed to examine whether Cd2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd2+. The cells overexpressing MATEs showed a 2-4 fold increase of Cd2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (Km) of 130±15.8µM for HEK-hMATE1; 139±21.3µM for HEK-hMATE2-K; and 88.7±13.5µM for HEK-mMate1, respectively. Cd2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC50) of 97.5±6.0µM, 20.2±2.6µM, and 49.9±6.9µM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd2+-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd2+ and may function as cellular elimination machinery in Cd intoxication.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Transporte Biológico , Cádmio/toxicidade , Células HEK293 , Humanos , Metformina/metabolismo , Metformina/farmacologia
7.
Mol Pharm ; 13(2): 512-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702643

RESUMO

Nadolol is a nonmetabolized ß-adrenoceptor antagonist and is a substrate of OATP1A2, but not of OATP2B1. However, other drug transporters involved in translocation of nadolol have not been characterized in detail. We therefore investigated nadolol as a potential substrate of the hepatic uptake transporters OATP1B1, OATP1B3, and OCT1 and of the renal transporters OCT2, MATE1, and MATE2-K expressed in HEK cells. Moreover, the importance of P-glycoprotein (P-gp) for nadolol transport was studied using double transfected MDCK-OCT1-P-gp cells. Nadolol was not transported by OATP1B1 and OATP1B3. In contrast, a significantly higher nadolol accumulation (at 1 and 10 µM) was found in OCT1, OCT2, MATE1, and MATE2-K cells compared to control cells (P < 0.01). Km values for OCT2-, MATE1-, and MATE2-K-mediated nadolol uptake were 122, 531, and 372 µM, respectively. Cimetidine (100 µM, P < 0.01) and trimethoprim (100 µM, P < 0.001) significantly inhibited OCT1-, OCT2-, MATE1-, and MATE2-K-mediated nadolol transport. The P-gp inhibitor zosuquidar significantly reduced basal to apical nadolol transport in monolayers of MDCK-OCT1-P-gp cells. In summary, nadolol is a substrate of the cation transporters OCT1, OCT2, MATE1, MATE2-K, and of P-gp. These data will aid future in vivo studies on potential transporter-mediated drug-drug or drug-food interactions with involvement of nadolol.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Nadolol/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Transportador 2 de Cátion Orgânico , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Especificidade por Substrato
8.
J Pharmacol Sci ; 131(2): 138-40, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27025966

RESUMO

This study aimed to determine the effect of multidrug and toxin extrusion protein 1 (MATE1) genetic variants on its transcript expression in peripheral blood cells. Consistent with previous in vitro findings, MATE1 mRNA levels were significantly higher in subjects carrying rs2453579, but not rs2252281, compared to those without either of these promoter variants. In addition, the mRNA levels did not differ between subjects with both variants and those with neither allele. Thus, this study reveals that the influence of MATE1 genetic variants on its mRNA expression can be detected in vivo using peripheral blood.


Assuntos
Células Sanguíneas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , RNA Mensageiro/metabolismo , Alelos , Povo Asiático/genética , Genótipo , Humanos , Masculino , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Polimorfismo Genético , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética
9.
Biomed Pharmacother ; 178: 117114, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053425

RESUMO

Bosutinib has been approved for use in patients with chronic myeloid leukemia. Information regarding the effects of bosutinib on clinically important drug transporters is limited, particularly regarding its inhibitory potency on transporters and in vivo effects. Therefore, we conducted a study investigating the in vitro and in vivo effects of bosutinib on drug transporters. Bosutinib showed moderate or strong inhibitory effects on organic cation transporter 2, multidrug and toxin extrusion protein 1, and breast cancer resistance protein with IC50 values of 0.0894, 0.598, and 10.8 µM, respectively. In vivo experiments in rats showed that bosutinib significantly inhibited organic cation transporter 2 and multidrug and toxin extrusion protein 1, leading to a marked reduction in the renal clearance of metformin and an increase in systemic exposure to metformin. Bosutinib increased systemic exposure to sulfasalazine, a probe substrate of breast cancer resistance protein, by 75 % in rats, highlighting its potential to significantly affect intestinal drug efflux. These quantitative changes suggest that bosutinib may alter the in vivo pharmacokinetics of drugs that are substrates of these transporters, potentially leading to increased drug exposure and enhanced or unexpected pharmacological effects.


Assuntos
Compostos de Anilina , Nitrilas , Quinolinas , Animais , Nitrilas/farmacologia , Nitrilas/farmacocinética , Quinolinas/farmacologia , Quinolinas/farmacocinética , Compostos de Anilina/farmacologia , Compostos de Anilina/farmacocinética , Masculino , Ratos , Humanos , Ratos Sprague-Dawley , Metformina/farmacologia , Metformina/farmacocinética , Transporte Biológico/efeitos dos fármacos
10.
Pharmaceutics ; 16(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39204337

RESUMO

Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug-drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play.

11.
Toxicol Appl Pharmacol ; 273(1): 100-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24001450

RESUMO

The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1-/- mice. The nephrotoxicity was assessed in the wild-type and Mate1-/- mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1-/- mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT3) receptor antagonists, such as ondansetron, should be investigated in patients.


Assuntos
Cisplatino/toxicidade , Rim/efeitos dos fármacos , Ondansetron/toxicidade , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Animais , Células HEK293 , Humanos , Rim/patologia , Metformina/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico , Antagonistas do Receptor 5-HT3 de Serotonina/toxicidade
12.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382190

RESUMO

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

13.
Acta Pharm Sin B ; 11(12): 3869-3878, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024313

RESUMO

Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.

14.
Pharmaceutics ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182761

RESUMO

Trimethoprim is a frequently-prescribed antibiotic and therefore likely to be co-administered with other medications, but it is also a potent inhibitor of multidrug and toxin extrusion protein (MATE) and a weak inhibitor of cytochrome P450 (CYP) 2C8. The aim of this work was to develop a physiologically-based pharmacokinetic (PBPK) model of trimethoprim to investigate and predict its drug-drug interactions (DDIs). The model was developed in PK-Sim®, using a large number of clinical studies (66 plasma concentration-time profiles with 36 corresponding fractions excreted in urine) to describe the trimethoprim pharmacokinetics over the entire published dosing range (40 to 960 mg). The key features of the model include intestinal efflux via P-glycoprotein (P-gp), metabolism by CYP3A4, an unspecific hepatic clearance process, and a renal clearance consisting of glomerular filtration and tubular secretion. The DDI performance of this new model was demonstrated by prediction of DDIs and drug-drug-gene interactions (DDGIs) of trimethoprim with metformin, repaglinide, pioglitazone, and rifampicin, with all predicted DDI and DDGI AUClast and Cmax ratios within 1.5-fold of the clinically-observed values. The model will be freely available in the Open Systems Pharmacology model repository, to support DDI studies during drug development.

15.
Drug Metab Lett ; 13(2): 102-110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30734690

RESUMO

BACKGROUND: Cancer cells undergo genetic and environmental changes that can alter cellular disposition of drugs, notably by alterations of transmembrane drug transporters expression. Whether the influx organic cation transporter 1 (OCT1) encoded by the gene SLC221A1 is implicated in the cellular uptake of imatinib is still controversial. Besides, imatinib ionization state may be modulated by the hypoxic acidic surrounding extracellular microenvironment. OBJECTIVE: To determine the functional contribution of OCTs and extracellular pH on imatinib cellular disposition. METHODS: We measured imatinib uptake in two different models of selective OCTs drug transporter expression (transfected Xenopus laevis oocytes and OCT-expressing HEK293 human cells), incubated at pH 7.4 and 6, using specific mass spectrometry analysis. RESULTS: Imatinib cellular uptake occurred independently of OCT1- OCT2- or OCT3-mediated drug transport at pH 7.4. Uptake of the OCTs substrate tetraethylammonium in oocytes remained intact at pH 6, while the accumulation of imatinib in oocytes was 10-fold lower than at pH 7.4, irrespectively of OCTs expressions. In OCT1- and OCT2-HEK cells at pH 6, imatinib accumulation was reduced by 2- 3-fold regardless of OCTs expressions. Since 99.5% of imatinib at pH6 is under the cationic form, the reduced cellular accumulation of imatinib at such pH may be explained by the lower amount of uncharged imatinib remaining for passive diffusion across cellular membrane. CONCLUSION: Imatinib is not a substrate of OCTs 1-3 while the environmental pH modulates cellular disposition of imatinib. The observation that a slightly acidic extracellular pH influences imatinib cellular accumulation is important, considering the low extracellular pH reported in the hematopoietic leukemia/ cancer cell microenvironment.


Assuntos
Espaço Extracelular/química , Mesilato de Imatinib/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Animais , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fator 1 de Transcrição de Octâmero/metabolismo , Oócitos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Xenopus laevis
16.
Pharmaceutics ; 11(3)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845766

RESUMO

Previous observations demonstrated that cimetidine decreased the clearance of procainamide (PA) and/or N-acetylprocainamide (NAPA; the primary metabolite of PA) resulting in the increased systemic exposure and the decrease of urinary excretion. Despite an abundance of in vitro and in vivo data regarding pharmacokinetic interactions between PA/NAPA and cimetidine, however, a mechanistic approach to elucidate these interactions has not been reported yet. The primary objective of this study was to construct a physiological model that describes pharmacokinetic interactions between PA/NAPA and cimetidine, an inhibitor of rat organic cation transporter 2 (rOCT2) and rat multidrug and toxin extrusion proteins (rMATE1), by performing extensive in vivo and in vitro pharmacokinetic studies for PA and NAPA performed in the absence or presence of cimetidine in rats. When a single intravenous injection of PA HCl (10 mg/kg) was administered to rats, co-administration of cimetidine (100 mg/kg) significantly increased systemic exposure and decreased the systemic (CL) and renal (CLR) clearance of PA, and reduced its tissue distribution. Similarly, cimetidine significantly decreased the CLR of NAPA formed by the metabolism of PA and increased the AUC of NAPA. Considering that these drugs could share similar renal secretory pathways (e.g., via rOCT2 and rMATE1), a physiologically-based pharmacokinetic (PBPK) model incorporating semi-mechanistic kidney compartments was devised to predict drug-drug interactions (DDIs). Using our proposed PBPK model, DDIs between PA/NAPA and cimetidine were successfully predicted for the plasma concentrations and urinary excretion profiles of PA and NAPA observed in rats. Moreover, sensitivity analyses of the pharmacokinetics of PA and NAPA showed the inhibitory effects of cimetidine via rMATE1 were probably important for the renal elimination of PA and NAPA in rats. The proposed PBPK model may be useful for understanding the mechanisms of interactions between PA/NAPA and cimetidine in vivo.

17.
Acta Pharm Sin B ; 9(5): 1035-1049, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31649852

RESUMO

Managing the dysregulated host response to infection remains a major challenge in sepsis care. Chinese treatment guideline recommends adding XueBiJing, a five-herb medicine, to antibiotic-based sepsis care. Although adding XueBiJing further reduced 28-day mortality via modulating the host response, pharmacokinetic herb-drug interaction is a widely recognized issue that needs to be studied. Building on our earlier systematic chemical and human pharmacokinetic investigations of XueBiJing, we evaluated the degree of pharmacokinetic compatibility for XueBiJing/antibiotic combination based on mechanistic evidence of interaction risk. Considering both XueBiJing‒antibiotic and antibiotic‒XueBiJing interaction potential, we integrated informatics-based approach with experimental approach and developed a compound pair-based method for data processing. To reflect clinical reality, we selected for study XueBiJing compounds bioavailable for drug interactions and 45 antibiotics commonly used in sepsis care in China. Based on the data of interacting with drug metabolizing enzymes and transporters, no XueBiJing compound could pair, as perpetrator, with the antibiotics. Although some antibiotics could, due to their inhibition of uridine 5'-diphosphoglucuronosyltransferase 2B15, organic anion transporters 1/2 and/or organic anion-transporting polypeptide 1B3, pair with senkyunolide I, tanshinol and salvianolic acid B, the potential interactions (resulting in increased exposure) are likely desirable due to these XueBiJing compounds' low baseline exposure levels. Inhibition of aldehyde dehydrogenase by 7 antibiotics probably results in undesirable reduction of exposure to protocatechuic acid from XueBiJing. Collectively, XueBiJing/antibiotic combination exhibited a high degree of pharmacokinetic compatibility at clinically relevant doses. The methodology developed can be applied to investigate other drug combinations.

18.
Acta Pharm Sin B ; 6(5): 363-373, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27709005

RESUMO

The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.

19.
Yao Xue Xue Bao ; (12): 865-870, 2017.
Artigo em Chinês | WPRIM | ID: wpr-779668

RESUMO

Drug transporters play vital roles in absorption, distribution and excretion of drugs. Under­standing the transport activity can improve the effectiveness and safety of drugs and guide clinical rational use of drugs. Metformin is a first-line drug in the treatment of type 2 diabetes mellitus, of which the pharmacokinetics involves several transporters. The changes in expression and function of these transporters affect directly the pharmacokinetics/pharmacodynamics of metformin. This paper reviews the research progress of pharmacokinetics of metformin based on transporters, and these transporters are organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATE), plasma membrane monoamine transporter protein (PMAT), serotonin reuptake transporter (SERT), thiamine transporter 2 (THTR-2), and carnitine/organic cation 1 (OCTN1).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa