Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 5): 1265-1272, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073886

RESUMO

In this study, double-multilayer monochromators that generate intense, high-energy, pink X-ray beams are designed, installed and evaluated at the SPring-8 medium-length (215 m) bending-magnet beamline BL20B2 for imaging applications. Two pairs of W/B4C multilayer mirrors are designed to utilize photon energies of 110 keV and 40 keV with bandwidths of 0.8% and 4.8%, respectively, which are more than 100 times larger when compared with the Si double-crystal monochromator (DCM) with a bandwidth of less than 0.01%. At an experimental hutch located 210 m away from the source, a large and uniform beam of size 14 mm (V) × 300 mm (H) [21 mm (V) × 300 mm (H)] was generated with a high flux density of 1.6 × 109 photons s-1 mm-2 (6.9 × 1010 photons s-1 mm-2) at 110 keV (40 keV), which marked a 300 (190) times increase in the photon flux when compared with a DCM with Si 511 (111) diffraction. The intense pink beams facilitate advanced X-ray imaging for large-sized objects such as fossils, rocks, organs and electronic devices with high speed and high spatial resolution.


Assuntos
Fótons , Síncrotrons , Raios X
2.
J Synchrotron Radiat ; 25(Pt 5): 1517-1528, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179193

RESUMO

Extreme ultraviolet (XUV) and X-ray free-electron lasers enable new scientific opportunities. Their ultra-intense coherent femtosecond pulses give unprecedented access to the structure of undepositable nanoscale objects and to transient states of highly excited matter. In order to probe the ultrafast complex light-induced dynamics on the relevant time scales, the multi-purpose end-station CAMP at the free-electron laser FLASH has been complemented by the novel multilayer-mirror-based split-and-delay unit DESC (DElay Stage for CAMP) for time-resolved experiments. XUV double-pulses with delays adjustable from zero femtoseconds up to 650 picoseconds are generated by reflecting under near-normal incidence, exceeding the time range accessible with existing XUV split-and-delay units. Procedures to establish temporal and spatial overlap of the two pulses in CAMP are presented, with emphasis on the optimization of the spatial overlap at long time-delays via time-dependent features, for example in ion spectra of atomic clusters.

3.
J Synchrotron Radiat ; 23(Pt 4): 880-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359136

RESUMO

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

4.
Ultramicroscopy ; 249: 113720, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004492

RESUMO

Ptychography is a lensless imaging technique that is aberration-free and capable of imaging both the amplitude and the phase of radiation reflected or transmitted from an object using iterative algorithms. Working with extreme ultraviolet (EUV) light, ptychography can provide better resolution than conventional optical microscopy and deeper penetration than scanning electron microscope. As a compact lab-scale EUV light sources, high harmonic generation meets the high coherence requirement of ptychography and gives more flexibilities in both budget and experimental time compared to synchrotrons. The ability to measure phase makes reflection-mode ptychography a good choice for characterising both the surface topography and the internal structural changes in EUV multilayer mirrors. This paper describes the use of reflection-mode ptychography with a lab-scale high harmonic generation based EUV light source to perform quantitative measurement of the amplitude and phase reflection from EUV multilayer mirrors with engineered substrate defects. Using EUV light at 29.6nm from a tabletop high harmonic generation light source, a lateral resolution down to ∼88nm and a phase resolution of 0.08rad (equivalent to topographic height variation of 0.27nm) are achieved. The effect of surface distortion and roughness on EUV reflectivity is compared to topographic properties of the mirror defects measured using both atomic force microscopy and scanning transmission electron microscopy. Modelling of reflection properties from multilayer mirrors is used to predict the potential of a combination of on-resonance, actinic ptychographic imaging at 13.5nm and atomic force microscopy for characterising the changes in multilayered structures.

5.
J Res Natl Inst Stand Technol ; 111(3): 219-25, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-27274930

RESUMO

We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa