Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 838
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2221707120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253006

RESUMO

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Coativador 3 de Receptor Nuclear , Animais , Feminino , Masculino , Camundongos , Ligantes , Camundongos Knockout , Coativador 3 de Receptor Nuclear/genética , Linfócitos T Reguladores , Tamoxifeno/farmacologia
2.
J Virol ; : e0056024, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087762

RESUMO

Powassan virus (POWV) is an emergent tick-borne flavivirus that causes fatal encephalitis in the elderly and long-term neurologic sequelae in survivors. How age contributes to severe POWV encephalitis remains an enigma, and no animal models have assessed age-dependent POWV neuropathology. Inoculating C57BL/6 mice with a POWV strain (LI9) currently circulating in Ixodes ticks resulted in age-dependent POWV lethality 10-20 dpi. POWV infection of 50-week-old mice was 82% fatal with lethality sequentially reduced by age to 7.1% in 10-week-old mice. POWV LI9 was neuroinvasive in mice of all ages, causing acute spongiform CNS pathology and reactive gliosis 5-15 dpi that persisted in survivors 30 dpi. High CNS viral loads were found in all mice 10 dpi. However, by 15 dpi, viral loads decreased by 2-4 logs in 10- to 40-week-old mice, while remaining at high levels in 50-week-old mice. Age-dependent differences in CNS viral loads 15 dpi occurred concomitantly with striking changes in CNS cytokine responses. In the CNS of 50-week-old mice, POWV induced Th1-type cytokines (IFNγ, IL-2, IL-12, IL-4, TNFα, IL-6), suggesting a neurodegenerative pro-inflammatory M1 microglial program. By contrast, in 10-week-old mice, POWV-induced Th2-type cytokines (IL-10, TGFß, IL-4) were consistent with a neuroprotective M2 microglial phenotype. These findings correlate age-dependent CNS cytokine responses and viral loads with POWV lethality and suggest potential neuroinflammatory therapeutic targets. Our results establish the age-dependent lethality of POWV in a murine model that mirrors human POWV severity and long-term CNS pathology in the elderly. IMPORTANCE: Powassan virus is an emerging tick-borne flavivirus causing lethal encephalitis in aged individuals. We reveal an age-dependent POWV murine model that mirrors human POWV encephalitis and long-term CNS damage in the elderly. We found that POWV is neuroinvasive and directs reactive gliosis in all age mice, but at acute stages selectively induces pro-inflammatory Th1 cytokine responses in 50-week-old mice and neuroprotective Th2 cytokine responses in 10-week-old mice. Our findings associate CNS viral loads and divergent cytokine responses with age-dependent POWV lethality and survival outcomes. Responses of young mice suggest potential therapeutic targets and approaches for preventing severe POWV encephalitis that may be broadly applicable to other neurodegenerative diseases. Our age-dependent murine POWV model permits analysis of vaccines that prevent POWV lethality, and therapeutics that resolve severe POWV encephalitis.

3.
Mol Ther ; 32(7): 2286-2298, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38720458

RESUMO

Injectable anticoagulants are widely used in medical procedures to prevent unwanted blood clotting. However, many lack safe, effective reversal agents. Here, we present new data on a previously described RNA origami-based, direct thrombin inhibitor (HEX01). We describe a new, fast-acting, specific, single-molecule reversal agent (antidote) and present in vivo data for the first time, including efficacy, reversibility, preliminary safety, and initial biodistribution studies. HEX01 contains multiple thrombin-binding aptamers appended on an RNA origami. It exhibits excellent anticoagulation activity in vitro and in vivo. The new single-molecule, DNA antidote (HEX02) reverses anticoagulation activity of HEX01 in human plasma within 30 s in vitro and functions effectively in a murine liver laceration model. Biodistribution studies of HEX01 in whole mice using ex vivo imaging show accumulation mainly in the liver over 24 h and with 10-fold lower concentrations in the kidneys. Additionally, we show that the HEX01/HEX02 system is non-cytotoxic to epithelial cell lines and non-hemolytic in vitro. Furthermore, we found no serum cytokine response to HEX01/HEX02 in a murine model. HEX01 and HEX02 represent a safe and effective coagulation control system with a fast-acting, specific reversal agent showing promise for potential drug development.


Assuntos
Aptâmeros de Nucleotídeos , Trombina , Animais , Camundongos , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Trombina/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Distribuição Tecidual , RNA , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/efeitos dos fármacos , Anticoagulantes/farmacologia , Anticoagulantes/química , Antitrombinas/farmacologia , Antídotos/farmacologia , Antídotos/química
4.
Mol Ther ; 32(3): 766-782, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38273656

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lethal disease in the absence of demonstrated efficacy for preventing progression. Although macrophage-mediated alveolitis is determined to participate in myofibrotic transition during disease development, the paradigm of continuous macrophage polarization is still under-explored due to lack of proper animal models. Here, by integrating 2.5 U/kg intratracheal Bleomycin administration and 10 Gy thorax irradiation at day 7, we generated a murine model with continuous alveolitis-mediated fibrosis, which mimics most of the clinical features of our involved IPF patients. In combination with data from scRNA-seq of patients and a murine IPF model, a decisive role of CCL2/CCR2 axis in driving M1 macrophage polarization was revealed, and M1 macrophage was further confirmed to boost alveolitis in leading myofibroblast activation. Multiple sticky-end tetrahedral framework nucleic acids conjunct with quadruple ccr2-siRNA (FNA-siCCR2) was synthesized in targeting M1 macrophages. FNA-siCCR2 successfully blocked macrophage accumulation in pulmonary parenchyma of the IPF murine model, thus preventing myofibroblast activation and leading to the disease remitting. Overall, our studies lay the groundwork to develop a novel IPF murine model, reveal M1 macrophages as potential therapeutic targets, and establish new treatment strategy by using FNA-siCCR2, which are highly relevant to clinical scenarios and translational research in the field of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose , DNA , Bleomicina
5.
Mol Cell Proteomics ; 22(7): 100590, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37301378

RESUMO

Ovarian cancer, a leading cause of cancer-related deaths among women, has been notoriously difficult to screen for and diagnose early, as early detection significantly improves survival. Researchers and clinicians seek routinely usable and noninvasive screening methods; however, available methods (i.e., biomarker screening) lack desirable sensitivity/specificity. The most fatal form, high-grade serous ovarian cancer, often originate in the fallopian tube; therefore, sampling from the vaginal environment provides more proximal sources for tumor detection. To address these shortcomings and leverage proximal sampling, we developed an untargeted mass spectrometry microprotein profiling method and identified cystatin A, which was validated in an animal model. To overcome the limits of detection inherent to mass spectrometry, we demonstrated that cystatin A is present at 100 pM concentrations using a label-free microtoroid resonator and translated our workflow to patient-derived clinical samples, highlighting the potential utility of early stage detection where biomarker levels would be low.


Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas , Humanos , Animais , Feminino , Cistatina A , Neoplasias Ovarianas/metabolismo , Micropeptídeos
6.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864710

RESUMO

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Assuntos
Dependovirus , Fator VIII , Vetores Genéticos , Hemofilia A , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicações , Dependovirus/genética , RNA Longo não Codificante/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/metabolismo , Artropatias/terapia , Artropatias/genética , Artropatias/etiologia , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Masculino
7.
Infect Immun ; 92(8): e0011724, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38940601

RESUMO

Digital dermatitis (DD) is an ulcerative foot lesion on the heel bulbs of dairy cattle. DD is a polymicrobial disease with no precise etiology, although Treponema spirochetes are found disproportionally abundant in diseased tissue. Within Treponema, several different species are found in DD; however, the species Treponema phagedenis is uniformly found in copious quantities and deep within the skin layers of the active, ulcerative stages of disease. The pathogenic mechanisms these bacteria use to persist in the skin and the precise role they play in the pathology of DD are widely unknown. To explore the pathogenesis and virulence of Treponema phagedenis, newly isolated strains of this species were investigated in a subcutaneous murine abscess model. In the first trial, a dosage study was conducted to compare the pathogenicity of different strains across three different treponemes per inoculum (TPI) doses based on abscess volumes. In the second trial, the expression levels of 11 putative virulence genes were obtained to gain insight into their involvement in pathogenesis. During the RT-qPCR analysis, it was determined that genes encoding for two metal-ion import lipoproteins and two adherence genes were found highly upregulated during infection. Conversely, two genes involved in motility and chemotaxis were found to not be significantly upregulated or utilized during infection. These results were supported by gene expression data from natural M2 lesions of dairy cattle. This gene expression analysis could highlight the preference in strategy for T. phagedenis to persist and adhere in the host rather than engage in motility and disseminate.


Assuntos
Doenças dos Bovinos , Dermatite Digital , Treponema , Infecções por Treponema , Animais , Bovinos , Treponema/genética , Treponema/patogenicidade , Treponema/isolamento & purificação , Dermatite Digital/microbiologia , Infecções por Treponema/microbiologia , Camundongos , Doenças dos Bovinos/microbiologia , Aderência Bacteriana , Regulação Bacteriana da Expressão Gênica , Virulência/genética , Feminino , Metais/metabolismo , Abscesso/microbiologia , Fatores de Virulência/genética
8.
Am J Transplant ; 24(8): 1369-1381, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552961

RESUMO

Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40-/- recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1ß from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1ß synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1ß-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.


Assuntos
Antígenos CD40 , Ligante de CD40 , Fatores de Transcrição Forkhead , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Doadores de Tecidos , Linfócitos T Reguladores/imunologia , Animais , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/antagonistas & inibidores , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/imunologia , Camundongos Knockout , Anticorpos Monoclonais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Camundongos Endogâmicos BALB C , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Rim
9.
Clin Exp Allergy ; 54(2): 109-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38011856

RESUMO

BACKGROUND: Preschool wheeze attacks triggered by recurrent viral infections, including respiratory syncytial virus (RSV), are associated with an increased risk of childhood asthma. However, mechanisms that lead to asthma following early-life viral wheezing remain uncertain. METHODS: To investigate a causal relationship between early-life RSV infections and onset of type 2 immunity, we developed a neonatal murine model of recurrent RSV infection, in vivo and in silico, and evaluated the dynamical changes of altered airway barrier function and downstream immune responses, including eosinophilia, mucus secretion and type 2 immunity. RESULTS: RSV infection of neonatal BALB/c mice at 5 and 15 days of age induced robust airway eosinophilia, increased pulmonary CD4+ IL-13+ and CD4+ IL-5+ cells, elevated levels of IL-13 and IL-5 and increased airway mucus at 20 days of age. Increased bronchoalveolar lavage albumin levels, suggesting epithelial barrier damage, were present and persisted following the second RSV infection. Computational in silico simulations demonstrated that recurrent RSV infection resulted in severe damage of the airway barrier (epithelium), triggering the onset of type 2 immunity. The in silico results also demonstrated that recurrent infection is not always necessary for the development of type 2 immunity, which could also be triggered with single infection of high viral load or when the epithelial barrier repair is compromised. CONCLUSIONS: The neonatal murine model demonstrated that recurrent RSV infection in early life alters airway barrier function and promotes type 2 immunity. A causal relationship between airway barrier function and type 2 immunity was suggested using in silico model simulations.


Assuntos
Asma , Eosinofilia , Infecções por Vírus Respiratório Sincicial , Humanos , Pré-Escolar , Animais , Camundongos , Recém-Nascido , Infecções por Vírus Respiratório Sincicial/complicações , Interleucina-13 , Modelos Animais de Doenças , Interleucina-5 , Pulmão , Asma/etiologia , Eosinofilia/etiologia , Camundongos Endogâmicos BALB C
10.
Allergy ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932655

RESUMO

BACKGROUND: The pathological mechanism of the gastrointestinal forms of food allergies is less understood in comparison to other clinical phenotypes, such as asthma and anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastrointestinal allergies. METHODS: This study investigated how high-IgE levels influence the development of intestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered metabolome with gut microbiome was analysed. RESULTS: Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT mice developed moderate AE, whereas OVA/EW IgEki mice induced more aggravated intestinal inflammation with enhanced eosinophil accumulation. Untargeted metabolomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol, and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, which was accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit any signs of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Compared to NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphingosine were detected in serum and faecal samples of NC/EW IgEki mice. In addition, several associations of altered metabolome with gut microbiome-for example Akkermansia with lysophosphatidylserine-were detected. CONCLUSIONS: Our results suggest that high-IgE levels alter intestinal and systemic levels of endogenous and microbiota-associated metabolites in experimental AE. This study contributes to deepening the knowledge of molecular mechanisms for the development of AE and provides clues to advance diagnostic and therapeutic strategies of allergic diseases.

11.
J Nutr ; 154(7): 2065-2075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797484

RESUMO

BACKGROUND: Iron is crucial for growth and development, but excess iron is harmful. Neonatal mice have elevated concentrations of circulating iron, but the source of this iron is unclear. This lack of understanding makes it difficult to optimize early life iron balance. OBJECTIVES: Identify the origins of neonatal tissue-specific iron pools using dietary manipulation and cross-fostering murine models. METHODS: To determine whether tissue-specific neonatal iron was primarily acquired during gestation or after birth, pups born to iron-sufficient or iron-deficient dams were cross-fostered, and tissues were harvested at postnatal days 3-5 to measure iron content. A separate set of female mice were fed a diet enriched with the stable iron isotope 57 (57Fe) for 4 generations to replace naturally abundant liver iron isotope 56 (56Fe) stores with 57Fe. To quantify the proportions of neonatal iron acquired during gestation, pups born to dams with 56Fe or 57Fe stores were cross-fostered, and tissues were harvested at postnatal day 3-5 to determine 56Fe:57Fe ratios by inductively coupled plasma mass spectrometry. Finally, to quantify the proportion of neonatal iron acquired from the maternal diet, female mice with 56Fe or 57Fe stores switched diets upon mating, and pup tissues were harvested on P0 to determine 56Fe:57Fe ratios by inductively coupled plasma mass spectrometry. RESULTS: Perinatal iron deficiency resulted in smaller pups, and gestational iron deficiency resulted in lower neonatal serum and liver iron. Cross-fostering between dams with 56Fe and 57Fe stores demonstrated that ≤70% of neonatal serum, liver, and brain iron were acquired during gestation. Dietary manipulation experiments using dams with 56Fe and 57Fe stores showed that over half of neonatal serum, liver, and brain iron were from the dam's gestational diet rather than preconception iron stores. CONCLUSIONS: This study provides quantitative values for the sources of neonatal iron, which may inform approaches to optimize neonatal iron status.


Assuntos
Animais Recém-Nascidos , Dieta , Ferro , Animais , Feminino , Gravidez , Camundongos , Ferro/metabolismo , Ferro/sangue , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos da Nutrição Materna , Ferro da Dieta/administração & dosagem , Masculino , Isótopos de Ferro
12.
J Theor Biol ; 593: 111898, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38996911

RESUMO

The CD8+ T cell response is the main determinant of viral clearance during influenza infection. However, influenza viral dynamics and the respective immune responses are affected by the host's age. To investigate age-related differences in the CD8+ T cell immune response dynamics, we propose 16 ordinary differential equation models of existing experimental data. These data consist of viral titer and CD8+ T cell counts collected periodically over a period of 19 days from adult and aged mice infected with influenza A/Puerto Rico/8/34 (H1N1). We use the corrected Akaike Information Criterion to identify the models which best represent the considered data. Our model selection process indicates differences in mechanisms which reduce the CD8+ T cell response: linear downregulation is favored for adult mice, while baseline exponential decay is favored for aged mice. Parameter fitting of the top ranked models suggests that the aged population has reduced CD8+ T cell proliferation compared to the adult population. More experimental work is needed to determine the specific immunological features through which age might cause these differences. A better understanding of the immunological mechanisms by which aging leads to discrepant CD8+ T cell dynamics may inform future treatment strategies.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Modelos Imunológicos , Infecções por Orthomyxoviridae , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Envelhecimento/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Fatores Etários
13.
Microbiol Immunol ; 68(2): 27-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073281

RESUMO

Pseudomonas aeruginosa (PA) remains one of the leading causes of nosocomial acute pneumonia. The array of virulence factors expressed by PA and the intense immune response associated with PA pneumonia play a major role in the severity of these infections. New therapeutic approaches are needed to overcome the high resistance of PA to antibiotics and to reduce the direct damage to host tissues. Through its immunomodulatory and anti-virulence effects, azithromycin (AZM) has demonstrated clinical benefits in patients with chronic PA respiratory infections. However, there is relatively little evidence in PA acute pneumonia. We investigated the effects of AZM, as an adjunctive therapy combined with ceftazidime (CAZ), in a murine model of PA acute pneumonia. We observed that the combined therapy (i) reduces the weight loss of mice 24 h post-infection (hpi), (ii) decreases neutrophil influx into the lungs at 6 and 24 hpi, while this effect is absent in a LPS-induced pneumonia or when PA is pretreated with antibiotics and mice do not receive any antibiotics, and that (iii) AZM, alone or with CAZ, modulates the expression of PA quorum sensing regulators and virulence factors (LasI, LasA, PqsE, PhzM, ExoS). Our findings support beneficial effects of AZM with CAZ on PA acute pneumonia by both bacterial virulence and immune response modulations. Further investigations are needed to clarify the exact underlying mechanisms responsible for the reduction of the neutrophils influx and to better discriminate between direct immunomodulatory properties of AZM, and indirect effects on neutrophilia resulting from bacterial virulence modulation.


Assuntos
Pneumonia , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Pseudomonas aeruginosa , Virulência , Modelos Animais de Doenças , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pneumonia/tratamento farmacológico , Fatores de Virulência/metabolismo
14.
BMC Anesthesiol ; 24(1): 167, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702608

RESUMO

The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.


Assuntos
Anestésicos Inalatórios , Dexmedetomidina , Eletroencefalografia , Ketamina , Propofol , Sevoflurano , Animais , Camundongos , Ketamina/farmacologia , Ketamina/administração & dosagem , Sevoflurano/farmacologia , Sevoflurano/administração & dosagem , Dexmedetomidina/farmacologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Propofol/farmacologia , Propofol/administração & dosagem , Masculino , Anestésicos Inalatórios/farmacologia , Anestésicos Inalatórios/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Camundongos Endogâmicos C57BL , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Anestésicos Intravenosos/farmacologia , Anestésicos Intravenosos/administração & dosagem , Anestesia/métodos
15.
Adv Exp Med Biol ; 1448: 481-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117835

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.


Assuntos
Síndrome da Liberação de Citocina , Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Animais , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Camundongos , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Citocinas/metabolismo , Citocinas/genética , Linfócitos T Citotóxicos/imunologia , Células Matadoras Naturais/imunologia
16.
Mycopathologia ; 189(3): 42, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709375

RESUMO

Pneumocystis pneumonia is a serious lung infection caused by an original ubiquitous fungus with opportunistic behavior, referred to as Pneumocystis jirovecii. P. jirovecii is the second most common fungal agent among invasive fungal infections after Candida spp. Unfortunately, there is still an inability to culture P. jirovecii in vitro, and so a great impairment to improve knowledge on the pathogenesis of Pneumocystis pneumonia. In this context, animal models have a high value to address complex interplay between Pneumocystis and the components of the host immune system. Here, we propose a protocol for a murine model of Pneumocystis pneumonia. Animals become susceptible to Pneumocystis by acquiring an immunocompromised status induced by iterative administration of steroids within drinking water. Thereafter, the experimental infection is completed by an intranasal challenge with homogenates of mouse lungs containing Pneumocystis murina. The onset of clinical signs occurs within 5 weeks following the infectious challenge and immunosuppression can then be withdrawn. At termination, lungs and bronchoalveolar lavage (BAL) fluids from infected mice are analyzed for fungal load (qPCR) and immune response (flow cytometry and biochemical assays). The model is a useful tool in studies focusing on immune responses initiated after the establishment of Pneumocystis pneumonia.


Assuntos
Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Pulmão , Pneumonia por Pneumocystis , Animais , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/patologia , Pneumonia por Pneumocystis/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Pneumocystis , Contagem de Colônia Microbiana , Pneumocystis carinii , Hospedeiro Imunocomprometido
17.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612577

RESUMO

The gut microbiota plays a significant role in tumor pathogenesis by regulating the host metabolism and immune response, and there are few studies focused on tracking changes in the gut microbiota from the onset of lung cancer. Therefore, the aim of our study is combining preclinical and clinical research to thoroughly analyze the signatures of fecal microbiota in lung cancer, which will be useful for early diagnosis and predicting the therapeutic efficacy of lung cancer. The first part of this study analyzed the fecal metagenomic differences between patients with non-small cell lung cancer and healthy subjects, and the second part of this work constructed a murine lung cancer model to monitor changes in mouse fecal metagenomics and T cell immunology during lung cancer progression. We found that the fecal microbiota was altered in both humans and mice with lung cancer, characterized by a significantly reduced microbial diversity and number of beneficial microbes, with increases in potential pathogens. The fecal level of Akkermansia muciniphila and the gut metabolic module of the secondary bile acid metabolism were diminished in both humans and mice with lung cancer compared with healthy subjects. Splenomegaly was observed in the lung cancer mice. Flow cytometer analysis of the splenocytes revealed substantial alterations in the proportions of T cell subsets in the lung cancer mice, characterized by significant increases in CD4+Foxp3+CD25+ T regulatory cells (p < 0.05) while significant decreases in CD3+ T cells (p < 0.001), CD4+ T cells (p < 0.001), and the CD4+/CD8+ ratio (p < 0.01). Vertical and longitudinal analyses of the fecal microbiota of the two mouse groups identified some lung cancer biomarkers (including Acutalibacter timonensis, Lachnospiraceae bacterium NSJ-38 sp014337195, etc.). The fecal microbiota of the lung cancer mice had a reduced metagenomic potential for neurotransmitters (melatonin, γ-aminobutyric acid, and histamine) compared with healthy mice. In summary, this study found that the diversity, structure, and composition of gut microbiota vary between cancer and healthy conditions, ultimately leading to changes in the potential for functional metagenomics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Biomarcadores Tumorais , Clostridiales
18.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063167

RESUMO

Urine pH reflects the functional integrity of the body and may influence the virulence of uropathogenic Escherichia coli and Klebsiella pneumoniae, the main causes of urinary tract infections (UTIs). This study evaluated the effects of acidic pH on the pathogenicity of uropathogenic E. coli and K. pneumoniae strains, in vitro and in vivo. Four uropathogenic E. coli and four K. pneumoniae strains were used. Biofilm formation, growth competition indices, motility, and adhesion and invasion of human renal cells were analyzed in media with acidic, neutral, and alkaline pH. A murine lower UTI model was used, with urine adjusted to acidic, neutral, or alkaline pH. At acidic pH, E. coli and K. pneumoniae exhibited higher bacterial concentrations in the kidneys and systemic symptoms, including bacteremia. Alkaline urine pH did not affect bacterial concentrations of any strain. In mice with UTIs caused by E. coli Nu14 and K. pneumoniae HUVR42 and acidic urine pH, histopathological studies of the kidneys showed acute inflammation affecting the urothelium and renal parenchyma, which are traits of acute pyelonephritis. These results indicate that acidic pH could increase the pathogenicity of E. coli and K. pneumoniae in murine models of lower UTI, promoting renal infection and acute inflammation.


Assuntos
Escherichia coli , Rim , Infecções por Klebsiella , Klebsiella pneumoniae , Infecções Urinárias , Klebsiella pneumoniae/patogenicidade , Concentração de Íons de Hidrogênio , Animais , Camundongos , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia , Rim/microbiologia , Rim/patologia , Humanos , Escherichia coli/patogenicidade , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Biofilmes/crescimento & desenvolvimento , Feminino , Virulência , Modelos Animais de Doenças , Escherichia coli Uropatogênica/patogenicidade , Pielonefrite/microbiologia , Pielonefrite/patologia
19.
Antimicrob Agents Chemother ; 67(2): e0139922, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36622240

RESUMO

Linezolid (LZD) was the first oxazolidinone approved for treating drug-resistant tuberculosis. A newly approved regimen combining LZD with bedaquiline (BDQ) and pretomanid (PMD) (BPaL regimen) is the first 6-month oral regimen that is effective against multidrug- and extensively drug-resistant tuberculosis. However, LZD toxicity, primarily due to mitochondrial protein synthesis inhibition, may undermine the efficacy of LZD regimens, and oxazolidinones with higher efficacy and lower toxicity during prolonged administration are needed. OTB-658 is an oxazolidinone anti-TB candidate derived from LZD that could replace LZD in TB treatment. We previously found that OTB-658 had better anti-TB activity and safety than LZD in vitro and in vivo. In the present work, two murine TB models were used to evaluate replacing LZD with OTB-658 in LZD-containing regimens. In the C3HeB/FeJ murine model, replacing 100 mg/kg LZD with 50 mg/kg OTB-658 in the BDQ + PMD backbone significantly reduced lung and spleen CFU counts (P < 0.05), and there were few relapses at 8 weeks of treatment. Replacing 100 mg/kg LZD with 50 or 100 mg/kg OTB-658 in the pyrifazimine (previously called TBI-166) + BDQ backbone did not change the anti-TB efficacy and relapse rate. In BALB/c mice, replacing 100 mg/kg LZD with 100 mg/kg OTB-658 in the TBI-166 + BDQ backbone resulted in no culture-positive lungs at 4 and 8 weeks of treatment, and there were no significant differences in relapses rate between the groups. In conclusion, OTB-658 is a promising clinical candidate that could replace LZD in the BPaL or TBI-166 + BDQ + LZD regimens and should be studied further in clinical trials.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Camundongos , Linezolida/uso terapêutico , Linezolida/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Modelos Animais de Doenças , Diarilquinolinas/uso terapêutico , Diarilquinolinas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico
20.
Br J Haematol ; 202(1): 173-183, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960712

RESUMO

The pathophysiologic mechanism of sickle cell disease (SCD) involves polymerization of deoxygenated haemoglobin S (HbS), leading to red blood cell (RBC) sickling, decreased RBC deformability, microvascular obstruction, haemolysis, anaemia and downstream clinical complications. Pharmacological increase in the concentration of oxygenated HbS in RBCs has been shown to be a novel approach to inhibit HbS polymerization and reduce RBC sickling and haemolysis. We report that GBT021601, a small molecule that increases HbS-oxygen affinity, inhibits HbS polymerization and prevents RBC sickling in blood from patients with SCD. Moreover, in a murine model of SCD (SS mice), GBT021601 reduces RBC sickling, improves RBC deformability, prolongs RBC half-life and restores haemoglobin levels to the normal range, while improving oxygen delivery and increasing tolerance to severe hypoxia. Notably, oral dosing of GBT021601 in animals results in higher levels of Hb occupancy than voxelotor and suggests the feasibility of once-daily dosing in humans. In summary, GBT021601 improves RBC health and normalizes haemoglobin in SS mice, suggesting that it may be useful for the treatment of SCD. These data are being used as a foundation for clinical research and development of GBT021601.


Assuntos
Anemia Falciforme , Hemólise , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Oxigênio , Anemia Falciforme/tratamento farmacológico , Eritrócitos , Hemoglobinas , Hemoglobina Falciforme
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa