RESUMO
Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.
Assuntos
Acetilcisteína , Metabolismo Energético , Lesão Pulmonar , Mecloretamina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Mecloretamina/toxicidade , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Substâncias para a Guerra Química/toxicidadeRESUMO
Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 µM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 µM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.
Assuntos
Pulmão , Mecloretamina , Animais , Mecloretamina/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Dano ao DNA , Camundongos Endogâmicos C57BL , Relação Dose-Resposta a Droga , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Substâncias para a Guerra Química/toxicidade , Glicólise/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologiaRESUMO
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.
Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Lesão Pulmonar Aguda/patologia , Animais , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Irritantes/toxicidade , Lipídeos , Pulmão , Ativação de Macrófagos , Masculino , Mecloretamina/toxicidade , CamundongosRESUMO
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Herein, we developed a murine model of NM-induced pulmonary toxicity with the goal of assessing inflammatory mechanisms of injury. C57BL/6J mice were euthanized 1-28 d following intratracheal exposure to NM (0.08â¯mg/kg) or PBS control. NM caused progressive alveolar epithelial thickening, perivascular inflammation, bronchiolar epithelial hyperplasia, interstitial fibroplasia and fibrosis, peaking 14 d post exposure. Enlarged foamy macrophages were also observed in the lung 14 d post NM, along with increased numbers of microparticles in bronchoalveolar lavage fluid (BAL). Following NM exposure, rapid and prolonged increases in BAL cells, protein, total phospholipids and surfactant protein (SP)-D were also detected. Flow cytometric analysis showed that CD11b+Ly6G-F4/80+Ly6Chi proinflammatory macrophages accumulated in the lung after NM, peaking at 3 d. This was associated with macrophage expression of HMGB1 and TNFα in histologic sections. CD11b+Ly6G-F4/80+Ly6Clo anti-inflammatory/pro-fibrotic macrophages also increased in the lung after NM peaking at 14 d, a time coordinate with increases in TGFß expression and fibrosis. NM exposure also resulted in alterations in pulmonary mechanics including increases in tissue elastance and decreases in compliance and static compliance, most prominently at 14 d. These findings demonstrate that NM induces structural and inflammatory changes in the lung that correlate with aberrations in pulmonary function. This mouse model will be useful for mechanistic studies of mustard lung injury and for assessing potential countermeasures.
Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Substâncias para a Guerra Química/toxicidade , Pulmão/patologia , Mecloretamina/toxicidade , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Fibrose , Humanos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Pulmonary fibrosis is characterized by destruction and remodeling of the lung due to an accumulation of collagen and other extracellular matrix components in the tissue. This results in progressive irreversible decreases in lung capacity, impaired gas exchange and eventually, hypoxemia. A number of inhaled and systemic toxicants including bleomycin, silica, asbestos, nanoparticles, mustard vesicants, nitrofurantoin, amiodarone, and ionizing radiation have been identified. In this article, we review the role of innate and adaptive immune cells and mediators they release in the pathogenesis of fibrotic pathologies induced by pulmonary toxicants. A better understanding of the pathogenic mechanisms underlying fibrogenesis may lead to the development of new therapeutic approaches for patients with these debilitating and largely irreversible chronic diseases.
Assuntos
Imunidade Adaptativa/imunologia , Substâncias Perigosas/imunologia , Imunidade Inata/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Animais , Doença Crônica , Substâncias Perigosas/toxicidade , HumanosRESUMO
Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.
Assuntos
Lesão Pulmonar , Humanos , Inflamação , Irritantes/toxicidade , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Mostardeira , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Nitrogen mustard (NM) causes acute lung injury, which progresses to fibrosis. This is associated with a macrophage-dominant inflammatory response and the production of proinflammatory/profibrotic mediators, including tumor necrosis factor alpha (TNF-α). Herein, we refined magnetic resonance imaging (MRI) and computed tomography (CT) imaging methodologies to track the progression of NM-induced lung injury in rodents and assess the efficacy of anti-TNF-α antibody in mitigating toxicity. Anti-TNF-α antibody was administered to rats (15 mg/kg, every 8 days, intravenously) beginning 30 min after treatment with phosphate-buffered saline control or NM (0.125 mg/kg, intratracheally). Animals were imaged by MRI and CT prior to exposure and 1-28 days postexposure. Using MRI, we characterized acute lung injury and fibrosis by quantifying high-signal lung volume, which represents edema, inflammation, and tissue consolidation; these pathologies were found to persist for 28 days following NM exposure. CT scans were used to assess structural components of the lung and to register changes in tissue radiodensities. CT scans showed that in control animals, total lung volume increased with time. Treatment of rats with NM caused loss of lung volume; anti-TNF-α antibody mitigated this decrease. These studies demonstrate that MRI and CT can be used to monitor lung disease and the impact of therapeutic intervention.