Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Plant J ; 114(2): 424-436, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786686

RESUMO

Meristemoids, which are stomatal precursor cells, exhibit self-renewal and differentiation abilities. However, the only known core factor associated with meristemoid division termination and fate transition is the heterodimer formed by the basic helix-loop-helix proteins MUTE and SCREAMs (SCRMs). FOUR LIPS (FLP), a well-known transcription factor that restricts guard mother cell (GMC) division, is a direct target of MUTE. Whether FLP involves in meristemoid differentiation is unknown. Through sensitized genetic screening of flp-1, we identified a mute-like (mutl) mutant with arrested meristemoids. The mutant carried a novel allele of the MUTE locus, i.e., mute-4. Intriguingly, mute-4 is a hypomorphic allele that exhibits wild-type appearance with slightly delayed meristemoid-to-GMC transition, whereas it renders an unexpected mutl epidermis with most meristemoids arrested and very few stomata when combined with flp (flp mute-4), suggesting that FLP is a positive regulator during this transition process. Consistently, the expression of FLP increased during GMC commitment, and the number of cells at this stage was markedly increased in flp. flp scrm double mutants produced arrested meristemoids similar to mute, and FLP was able to interact physically with SCRM. Taken together, our results demonstrate that FLP functions together with MUTE and SCRMs to direct meristemoid-to-GMC fate transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Lábio/metabolismo , Estômatos de Plantas/metabolismo
2.
Plant Cell Physiol ; 64(3): 325-335, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36609867

RESUMO

Plants develop in the absence of cell migration. As such, cell division and differentiation need to be coordinated for functional tissue formation. Cellular valves on the plant epidermis, stomata, are generated through a stereotypical sequence of cell division and differentiation events. In Arabidopsis, three master regulatory transcription factors, SPEECHLESS (SPCH), MUTE and FAMA, sequentially drive initiation, proliferation and differentiation of stomata. Among them, MUTE switches the cell cycle mode from proliferative asymmetric division to terminal symmetric division and orchestrates the execution of the single symmetric division event. However, it remains unclear to what extent MUTE regulates the expression of cell cycle genes through the symmetric division and whether MUTE accumulation itself is gated by the cell cycle. Here, we show that MUTE directly upregulates the expression of cell cycle components throughout the terminal cell cycle phases of a stomatal precursor, not only core cell cycle engines but also check-point regulators. Time-lapse live imaging using the multicolor Plant Cell Cycle Indicator revealed that MUTE accumulates up to the early G2 phase, whereas its successor and direct target, FAMA, accumulate at late G2 through terminal mitosis. In the absence of MUTE, meristemoids fail to differentiate and their G1 phase elongates as they reiterate asymmetric divisions. Together, our work provides the framework of cell cycle and master regulatory transcription factors to coordinate a single symmetric cell division and suggests a mechanism for the eventual cell cycle arrest of an uncommitted stem-cell-like precursor at the G1 phase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ciclo Celular , Estômatos de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Divisão Celular , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Exp Bot ; 74(18): 5667-5681, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37555400

RESUMO

Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Diferenciação Celular , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Qual Health Res ; 33(11): 1005-1016, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554077

RESUMO

Virtual spaces that allow parents in the postpartum period to connect, support each other, and exchange information have been increasing in popularity. With the COVID-19 pandemic, many parents had to rely on virtual platforms as a primary means to connect with others and attend to their postpartum health. This study explored virtual postpartum support sessions through the web-based videoconferencing software, Zoom. Guided by feminist poststructuralism and sociomaterialism, we held seven virtual support sessions for parents caring for a baby 0-12 months in age, in Canada, and interviewed 19 participants about their experiences in the sessions. Our methodological approach allowed us to analyze discourses of (1) parenthood, (2) material realities of virtual environments, and (3) support and information on this virtual platform. The purpose of this research was to understand how technology influences postpartum support and learning through online videoconferencing for parents. Our findings document an overarching discourse of Zoom etiquette by which muting was a discursive practice that all participants used. The consistent use of the mute button while not talking structured conversation in virtual postpartum sessions and resulted in three themes: (1) minimizing disruptions; (2) taking turns; and (3) staying on task. The norm of using the mute button changed how parents received and gave support and information. Based on findings and broader literature, we discuss considerations for facilitation of virtual postpartum support sessions.


Assuntos
COVID-19 , Pandemias , Feminino , Humanos , Apoio Social , Pais , Período Pós-Parto
5.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069278

RESUMO

As an exemplary model for examining molecular mechanisms responsible for extreme phenotypic variations, plumage color has garnered significant interest. The Cygnus genus features two species, Cygnus olor and Cygnus atratus, that exhibit striking disparities in plumage color. However, the molecular foundation for this differentiation has remained elusive. Herein, we present two high-quality genomes for C. olor and C. atratus, procured using the Illumina and Nanopore technologies. The assembled genome of C. olor was 1.12 Gb in size with a contig N50 of 26.82 Mb, while its counterpart was 1.13 Gb in size with a contig N50 of 21.91 Mb. A comparative analysis unveiled three genes (TYR, SLC45A2, and SLC7A11) with structural variants in the melanogenic pathway. Notably, we also identified a novel gene, PWWP domain containing 2A (PWWP2A), that is related to plumage color, for the first time. Using targeted gene modification analysis, we demonstrated the potential genetic effect of the PWWP2A variant on pigment gene expression and melanin production. Finally, our findings offer insight into the intricate pattern of pigmentation and the role of polygenes in birds. Furthermore, these two high-quality genome references provide a comprehensive resource and perspective for comparative functional and genetic studies of evolution within the Cygnus genus.


Assuntos
Aves , Genoma , Animais , Genômica
6.
Environ Res ; 214(Pt 3): 114014, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948152

RESUMO

Based on studies of the wintering population of mute swans in large urban agglomerations, it is possible to identify and infer the impact of environmental pollution in coastal regions near Baltic Sea on the physiological and biochemical changes in the blood of waterfowls. Hematological and biochemical changes in the blood in relation to chemical elements in their feathers are a useful tool for general ecophysiological conclusions. Hematological changes and blood chemistry in Mute Swan Cygnus olor is particularly environmentally dependent, therefore we examined hematological picture (red blood cells RBC, white blood cells WBC, heterophiles, eosinophils, basophils, monocytes, lymphocytes, hemoglobin, heterophile to lymphocyte ratio H/L, biochemical indicators (glucose, uric acid, total cholesterol, triglycerides, calcium, inorganic phosphorus, magnesium, total protein), stability of erythrocyte membranes, concentration of Ca, P, Mg in the blood, concentration of Al, Zn, Rh, Cu, Ru, Fe, Pb in feathers, in wintering population of 172 mute swans of different age (juvenile, adult) and gender, in three coastal types of areas of Southern Polish zone of Baltic Sea (Slupsk, Gdynia, Sopot). Percentage of changes in the morphological indices in the blood of mute swans with three independent characteristics (environment, sex, age) revealed that hemoglobin content exhibited the highest value (R2 = 53.8%) in the analysis of morphological indices; the effect of RBC, WBC, and basophils was much lower (WBC > RBC > basophils). Male and female erythrocytes from the coastal of Gdynia were more fragile than those of birds from coasts of Sopot and Slupsk. We found that osmotic fragility is altered in juvenile swans from Slupsk area and males from Gdynia area. The consequence was a higher level of hemolyzed erythrocytes in their blood. The effect of type of environment, age-, and sex-related impact on hematological indices and biomarkers of biochemical alterations in the blood of swans and comparison of these data with bioaccumulation of chemical elements in feathers of swans inhabiting 3 types of environment of Baltic coastal zone show significant differences in the hematological and biochemical indices. Albumins and globulins maintain the blood cations balance, however, changes in their concentrations in the blood suggest an impact on physiological mechanisms and body condition of swans.


Assuntos
Anseriformes , Animais , Anticorpos Antivirais , Aves , Poluição Ambiental , Feminino , Masculino , Estações do Ano
7.
Med J Armed Forces India ; 77(1): 105-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33487876

RESUMO

Congenitally deaf and mute adult patients have speech and language disabilities. Establishing meaningful communication with these patients is a challenge in acute hospital-care settings, particularly when anaesthetic care is to be provided. Several methods can be adopted to facilitate interaction, such as sensitisation of health-care providers and training them in ways to communicate effectively. A thorough preoperative assessment and customised perioperative management satisfying the patients needs will ensure a successful outcome. Implementing pain protocols and using tools such as Visual Analog Scale (VAS) will mitigate stress and surgical related complications.

8.
Physiol Mol Biol Plants ; 26(6): 1099-1110, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549675

RESUMO

Development of abiotic stress tolerant rice cultivars is necessary for sustainable rice production under the scenario of global climate change, dwindling fresh water resources and increase in salt affected areas. Several genes from rice have been functionally validated by using EMS mutants and transgenics. Often, many of these desirable alleles are not available indica rice which is mainly cultivated, and where available, introgression of these alleles into elite cultivars is a time and labour intensive process, in addition to the potential introgression of non-desirable genes due to linkage. CRISPR-Cas technology helps development of elite cultivars with desirable alleles by precision gene editing. Hence, this study was carried out to create mutant alleles of drought and salt tolerance (DST) gene by using CRISPR-Cas9 gene editing in indica rice cv. MTU1010. We used two different gRNAs to target regions of DST protein that might be involved in protein-protein interaction and successfully generated different mutant alleles of DST gene. We selected homozygous dst mutant with 366 bp deletion between the two gRNAs for phenotypic analysis. This 366 bp deletion led to the deletion of amino acid residues from 184 to 305 in frame, and hence the mutant was named as dst ∆184-305 . The dst ∆184-305 mutation induced by CRISPR-Cas9 method in DST gene in indica rice cv. MTU1010 phenocopied EMS-induced dst (N69D) mutation reported earlier in japonica cultivar. The dst ∆184-305 mutant produced leaves with broader width and reduced stomatal density, and thus enhanced leaf water retention under dehydration stress. Our study showed that the reduction in stomatal density in loss of function mutants of dst is, at least, in part due to downregulation of stomatal developmental genes SPCH1, MUTE and ICE1. The Cas9-free dst ∆184-305 mutant exhibited moderate level tolerance to osmotic stress and high level of salt stress in seedling stage. Thus, dst mutant alleles generated in this study will be useful for improving drought and salt tolerance and grain yield in indica rice cultivars.

9.
J Avian Med Surg ; 34(3): 289-294, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33099983

RESUMO

A 20-year-old female mute swan (Cygnus olor) originally in a flock of free-living swans on a Long Island, New York, lake, was presented for facial swelling and decreased appetite. An adult male ring-billed gull (Larus delawarensis) was also presented to the same wildlife rescue center for bilateral lameness of 1-week duration. Once referred for veterinary evaluation and care, both species were diagnosed with septic arthritis and osteomyelitis caused by Chryseobacterium indologenes and treated with orbifloxacin until complete recovery. Chryseobacterium indologenes is infrequently diagnosed as an opportunistic pathogen in human medicine, and less so in veterinary medicine. In human patients, this bacterium is the cause of various infections, including meningitis, pneumonia, and implant failure. However, in veterinary medicine its pathogenicity has only been reported in fish, and sporadically mentioned as a culture result in tree frogs and turtles, where it was generally considered insignificant. In this report a clinical presentation, diagnosis, treatment, and outcome of osteomyelitis and septic arthritis caused by C indologenes is described in 1 anseriforme and in 1 charadriiforme species.


Assuntos
Anseriformes , Doenças das Aves/microbiologia , Charadriiformes , Chryseobacterium/isolamento & purificação , Infecções por Flavobacteriaceae/veterinária , Animais , Antibacterianos/uso terapêutico , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/microbiologia , Artrite Infecciosa/veterinária , Doenças das Aves/tratamento farmacológico , Ciprofloxacina/análogos & derivados , Ciprofloxacina/uso terapêutico , Feminino , Infecções por Flavobacteriaceae/tratamento farmacológico , Infecções por Flavobacteriaceae/microbiologia , Masculino , Osteomielite/microbiologia , Osteomielite/veterinária
10.
Indian Pacing Electrophysiol J ; 17(1): 16-17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401855

RESUMO

To the best of our knowledge, for the first time in the literature, we described a congenitally deaf-mute patient with Brugada syndrome (BrS) in whom a mutation in L-type Ca+2 channel [CACNA1C (Cav1.2α1)] was identified.

11.
Planta ; 243(4): 987-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748914

RESUMO

MAIN CONCLUSION: The MUTE promoter contains a 175-bp region rich in Dof regulatory elements (AAAG) that is necessary and sufficient for initiation of transcription in meristemoids and the stomatal lineage. The molecular mechanism underlying the decision to divide or differentiate is a central question in developmental biology. During stomatal development, expression of the master regulator MUTE triggers the differentiation of meristemoids into stomata. In this study, we carried out MUTE promoter deletion analysis to define a regulatory region that promotes the initiation of expression in meristemoids. Expression constructs with truncated promoter fragments fused to ß-glucuronidase (GUS) were developed. The full-length promoter and promoter truncations of at least 500 bp from the translational start site exhibited normal spatiotemporal expression patterns. Further truncation revealed a 175-bp promoter fragment that was necessary and sufficient for stomatal-lineage expression. Known cis-elements were identified and tested for functional relevance. Comparison of orthologous MUTE promoters suggested DNA binding with one finger (Dof) regulatory elements and novel motifs may be important for regulation. Our data highlight the complexity and combinatorial control of gene regulation and provides tools to further investigate the genetic control of stomatal development.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Ribonucleico , Proteínas de Arabidopsis/genética , Sítios de Ligação , Brassicaceae/genética , Simulação por Computador , Glucuronidase/genética , Glucuronidase/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões não Traduzidas
12.
J Avian Med Surg ; 30(1): 30-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27088742

RESUMO

A juvenile mute swan (Cygnus olor) was presented with right lateral deviation of the mandible. Radiographs demonstrated a healed fracture of the right mandibular ramis, which had compromised osteogenesis. A corrective osteotomy was performed and an osteogenic distractor was inserted over the lateral aspect of the right mandible. Dental acrylic implants were fixed to the rhinotheca to correct rotational alignment. A pharyngostomy tube was placed to facilitate administration of nutrition and medication. Postoperative images confirmed correct alignment of the mandible in relation to the maxilla. Implants were removed and postoperative complications were not reported. This is the first report of an osteogenic distractor used to correct mandibular deviation in an avian species. Distraction osteogenesis should be considered as a valid surgical option in juvenile or adult avian patients with pathologic bone shortening.


Assuntos
Anseriformes , Doenças das Aves/cirurgia , Consolidação da Fratura/fisiologia , Fraturas Mal-Unidas/veterinária , Fraturas Mandibulares/veterinária , Osteogênese por Distração/veterinária , Animais , Animais Selvagens , Fraturas Mal-Unidas/patologia , Fraturas Mandibulares/patologia , Osteogênese por Distração/instrumentação , Osteogênese por Distração/métodos
13.
J Biol Chem ; 289(49): 33767-82, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25339177

RESUMO

Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Histonas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras , Sequência Conservada , Proteínas de Ligação a DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Plant J ; 75(5): 808-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23662679

RESUMO

Epidermal differentiation in Arabidopsis thaliana aerial organs involves stomatal lineage development. Lineages derive from meristemoids, which arise from asymmetric divisions of protodermal cells. Each meristemoid divides repeatedly in an inward spiral before it transits to a guard mother cell (GMC) that produces the stoma, leaving a trail of surrounding stomatal lineage ground cells (SLGCs) that eventually differentiate into endoreplicated pavement cells. MUTE is a bHLH transcription factor that is expressed in late meristemoids and drives their transition to GMCs. Loss-of-function mute mutants are stomata-less dwarf plants with arrested lineages, in which stunted putative SLGCs surround a halted meristemoid. We analysed MUTE functions using a chemically inducible system for mute-3 complementation based on conditional MUTE expression in its normal domain. Continuous induction from germination produced stomata-bearing, normal-sized plants with viable mute-3 seeds. In 2-week-old mute-3 cotyledons, meristemoids appeared to retain their identity and synchronously formed stomata in response to induced MUTE expression. However, arrested SLGCs were not complemented: many produced stomata, leading to stomatal clusters, and others remained unexpanded and diploid. In contrast, non-lineage pavement cells, which are under-endoreplicated in mute-3, expanded and increased their ploidy level upon induction, showing that the lack of response of SLGCs is specific to this arrested cell type. Leaf phenotypic mosaics include wild-type lineages and adjacent mute-3 lineages, whose meristemoids and putative SLGCs remained arrested, indicating that the role of MUTE in SLGC fate is strictly lineage-autonomous. These results show that timely MUTE expression is essential to prevent stomatal fate in SLGCs and to promote their differentiation as pavement cells.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estradiol/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Fenótipo , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Ploidias
15.
Vet Rec ; 194(4): e3828, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38291788

RESUMO

BACKGROUND: A neurological examination is essential for determining the localisation of neurological lesions. However, in avian species, quantitative data regarding the practicability and feasibility of neurological tests are very limited. Therefore, the aim of this study was to establish normative data for the neurological examination of clinically healthy birds of different species. METHODS: Forty-two domestic and feral pigeons (Columba livia domestica), 42 mute swans (Cygnus olor), 12 common buzzards (Buteo buteo), 24 common kestrels (Falco tinnunculus) and six northern goshawks (Accipiter gentilis) were examined. All birds underwent a predefined neurological examination. Interobserver variations between three examiners were investigated in 11 pigeons and 11 mute swans. RESULTS: All postural reaction tests, except for the drop and flap reaction in mute swans, provoked a consistent response in pigeons and mute swans, whereas postural reaction tests of the legs in raptors were often not performable. Cranial nerve tests and most of the spinal reflexes revealed variable responses in all birds. The gastrocnemius reflex was not provokable in any bird. Interobserver agreement was almost perfect (Gwet's AC1 coefficient ≥0.81) for 16 of 21 parameters in the examination in pigeons and for 14 of 21 in mute swans. LIMITATIONS: The inclusion of free-ranging birds, which were not used to handling and for which limited information regarding age, history of previous diseases, etc. was available, may have influenced the results. CONCLUSION: The normative neurological examination data provided in this study will help improve clinicians' interpretation of neurological examination results in the respective bird species.


Assuntos
Anseriformes , Doenças das Aves , Águias , Falcões , Influenza Aviária , Animais , Columbidae , Influenza Aviária/patologia , Exame Neurológico/veterinária
16.
Ecol Evol ; 14(7): e11647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026949

RESUMO

Recent outbreaks of highly pathogenic avian influenza have devastated poultry production across the United States, with more than 77 million birds culled in 2022-2024 alone. Wild waterfowl, including various invasive species, host numerous pathogens, including highly pathogenic avian influenza virus (HPAIV), and have been implicated as catalysts of disease outbreaks among native fauna and domestic birds. In major poultry-producing states like Arkansas, USA, where the poultry sector is responsible for significant economic activity (>$4 billion USD in 2022), understanding the risk of invasive waterfowl interactions with domestic poultry is critical. Here, we assessed the risk of invasive waterfowl-poultry interaction in Arkansas by comparing the density of poultry production sites (chicken houses) to areas of high habitat suitability for two invasive waterfowl species, (Egyptian Goose [Alopochen aegyptiaca] and Mute Swan [Cygnus olor]), known to host significant pathogens, including avian influenza viruses. The percentage of urban land cover was the most important habitat characteristic for both invasive waterfowl species. At the 95% confidence interval, chicken house densities in areas highly suitable for both species (Egyptian Goose = 0.91 ± 0.11 chicken houses/km2; Mute Swan = 0.61 ± 0.03 chicken houses/km2) were three to five times higher than chicken house densities across the state (0.17 ± 0.01 chicken houses/km2). We show that northwestern and western Arkansas, both areas of high importance for poultry production, are also at high risk of invasive waterfowl presence. Our results suggest that targeted monitoring efforts for waterfowl-poultry contact in these areas could help mitigate the risk of avian pathogen exposure in Arkansas and similar regions with high poultry production.

17.
BMC Ecol Evol ; 24(1): 17, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302909

RESUMO

The quality of swans' nutrition at spring migration stopovers is important for their successful breeding. It is of great interest to study the differences in nutrition of different swan species when sharing the same habitat. Microscopic analysis of Cygnus olor, C. cygnus, and C. columbianus bewickii feces collected in the eastern part of the Gulf of Finland in February-April 2014-2019 was performed. We measured food preferences of the three swan species using non-metric multidimensional scaling (NMDS). The width and overlap of dietary niches were also calculated. The diet of C. olor consists almost entirely of soft submerged aquatic vegetation, mainly macroalgae. Samples of the other two species except macroalgae contained large amounts of young shoots and roots of rigid semi-submerged and coastal vegetation. The dietary niche of C. cygnus is the most isolated because it is dominated by thick rhizomes of Phragmites australis, which are hardly used by other swan species. The diet of Bewick's swans was similar in many respects to that of the Mute swan, but Bewick's swans much more often preferred vegetative parts of submerged and semi-submerged plants, such as Stuckenia pectinata, Potamogeton perfoliatus, Sparganium sp., Nuphar lutea, and others. Notably, the dietary niches of Mute swan and Whooper swan overlapped as much as possible in February March during a period of severe food shortage, in contrast to later periods in spring when food was more abundant and varied. In general, differences in diets are well explained by differences in the morphology of birds. Comparison of tarsometatarsus indices shows that C. olor is the most water-related species. C. olor has the longest neck and its beak has the strongest filter features, whereas beaks of the other two species shows noticeable "goose-like grazing" features. Moreover, C. Cygnus has the most powerful beak. These features are due to the history of species. The formation of C. olor occurred during the Miocene-Pliocene of the Palaearctic in the warm eutrophic marine lagoons of the Paratethys with abundant soft submerged vegetation. The evolution of C. cygnus and C. c. bewickii took place in Pleistocene. At that time, periglacial and thermokarst water bodies on permafrost became widespread in the Palearctic, as well as dystrophic peat lakes with much poorer submerged aquatic vegetation, but well-developed coastal and semi-submerged vegetation.


Assuntos
Anseriformes , Melhoramento Vegetal , Animais , Filogenia , Dieta , Patos , Água
18.
Psychoanal Q ; 82(3): 689-740, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824652

RESUMO

The author considers the medical rationale for Wilhelm Fliess's operation on Emma Eckstein's nose in February 1895 and interprets the possible role that this played in Freud's dream of Irma's injection five months later. The author's main argument is that Emma likely endured female castration as a child and that she therefore experienced the surgery to her nose in 1895 as a retraumatization of her childhood trauma. The author further argues that Freud's unconscious identification with Emma, which broke through in his dream of Irma's injection with resistances and apotropaic defenses, served to accentuate his own "masculine protest". The understanding brought to light by the present interpretation of Freud's Irma dream, when coupled with our previous knowledge of Freud, allows us to better grasp the unconscious logic and origins of psychoanalysis itself.(1.)


Assuntos
Sonhos/psicologia , Teoria Freudiana/história , Psicanálise/história , Transtornos de Estresse Traumático/psicologia , Adulto , Feminino , História do Século XIX , História do Século XX , Humanos , Masculino
19.
Curr Biol ; 33(3): 543-556.e4, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696900

RESUMO

Land plants have evolved the ability to cope with submergence. Amphibious plants are adapted to both aerial and aquatic environments through phenotypic plasticity in leaf form and function, known as heterophylly. In general, underwater leaves of amphibious plants are devoid of stomata, yet their molecular regulatory mechanisms remain elusive. Using the emerging model of the Brassicaceae amphibious species Rorippa aquatica, we lay the foundation for the molecular physiological basis of the submergence-triggered inhibition of stomatal development. A series of temperature shift experiments showed that submergence-induced inhibition of stomatal development is largely uncoupled from morphological heterophylly and likely regulated by independent pathways. Submergence-responsive transcriptome analysis revealed rapid reprogramming of gene expression, exemplified by the suppression of RaSPEECHLESS and RaMUTE within 1 h and the involvement of light and hormones in the developmental switch from terrestrial to submerged leaves. Further physiological studies place ethylene as a central regulator of the submergence-triggered inhibition of stomatal development. Surprisingly, red and blue light have opposing functions in this process: blue light promotes, whereas red light inhibits stomatal development, through influencing the ethylene pathway. Finally, jasmonic acid counteracts the inhibition of stomatal development, which can be attenuated by the red light. The actions and interactions of light and hormone pathways in regulating stomatal development in R. aquatica are different from those in the terrestrial species, Arabidopsis thaliana. Thus, our work suggests that extensive rewiring events of red light to ethylene signaling might underlie the evolutionary adaption to water environment in Brassicaceae.


Assuntos
Arabidopsis , Brassicaceae , Rorippa , Rorippa/genética , Rorippa/metabolismo , Folhas de Planta , Arabidopsis/genética , Etilenos/metabolismo , Hormônios/metabolismo , Estômatos de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Genes (Basel) ; 14(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372348

RESUMO

Nitrogen (N), phosphorus (P), and potassium (K) are the three most important mineral nutrients for crop growth and development. We previously constructed a genetic map of unigenes (UG-Map) based on their physical positions using a RIL population derived from the cross of "TN18 × LM6" (TL-RILs). In this study, a total of 18 traits related to mineral use efficiency (MUE) of N/P/K were investigated under three growing seasons using TL-RILs. A total of 54 stable QTLs were detected, distributed across 19 chromosomes except for 3A and 5B. There were 50 QTLs associated with only one trait, and the other four QTLs were associated with two traits. A total of 73 candidate genes for stable QTLs were identified. Of these, 50 candidate genes were annotated in Chinese Spring (CS) RefSeq v1.1. The average number of candidate genes per QTL was 1.35, with 45 QTLs containing only one candidate gene and nine QTLs containing two or more candidate genes. The candidate gene TraesCS6D02G132100 (TaPTR gene) for QGnc-6D-3306 belongs to the NPF (NRT1/PTR) gene family. We speculate that the TaPTR gene should regulate the GNC trait.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo , Minerais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa