RESUMO
Cardiovascular Disease (CVD) is a primary cause of heart problems such as angina and myocardial ischemia. The detection of the stage of CVD is vital for the prevention of medical complications related to the heart, as they can lead to heart muscle death (known as myocardial infarction). The electrocardiogram (ECG) reflects these cardiac condition changes as electrical signals. However, an accurate interpretation of these waveforms still calls for the expertise of an experienced cardiologist. Several algorithms have been developed to overcome issues in this area. In this study, a new scheme for myocardial ischemia detection with multi-lead long-interval ECG is proposed. This scheme involves an observation of the changes in ischemic-related ECG components (ST segment and PR segment) by way of the Choi-Williams time-frequency distribution to extract ST and PR features. These extracted features are mapped to a multi-class SVM classifier for training in the detection of unknown conditions to determine if they are normal or ischemic. The use of multi-lead ECG for classification and 1 min intervals instead of beats or frames contributes to improved detection performance. The classification process uses the data of 92 normal and 266 patients from four different databases. The proposed scheme delivered an overall result with 99.09% accuracy, 99.49% sensitivity, and 98.44% specificity. The high degree of classification accuracy for the different and unknown data sources used in this study reflects the flexibility, validity, and reliability of this proposed scheme. Additionally, this scheme can assist cardiologists in detecting signal abnormality with robustness and precision, and can even be used for home screening systems to provide rapid evaluation in emergency cases.
Assuntos
Isquemia Miocárdica , Máquina de Vetores de Suporte , Algoritmos , Eletrocardiografia , Humanos , Isquemia Miocárdica/diagnóstico , Reprodutibilidade dos TestesRESUMO
Nowadays, cardiovascular diseases (CVD) is one of the prime causes of human mortality, which has received tremendous and elaborative research interests regarding the prevention issue. Myocardial ischemia is a kind of CVD which will lead to myocardial infarction (MI). The diagnostic criterion of MI is supplemented with clinical judgement and several electrocardiographic (ECG) or vectorcardiographic (VCG) programs. However the visual inspection of ECG or VCG signals by cardiologists is tedious, laborious and subjective. To overcome such disadvantages, numerous MI detection techniques including signal processing and artificial intelligence tools have been developed. In this study, we propose a novel technique for automatic detection of MI based on disparity of cardiac system dynamics and synthesis of the standard 12-lead and Frank XYZ leads. First, 12-lead ECG signals are synthesized with Frank XYZ leads to build a hybrid 4-dimensional cardiac vector, which is decomposed into a series of proper rotation components (PRCs) by using the intrinsic time-scale decomposition (ITD) method. The novel cardiac vector may fully reflect the pathological alterations provoked by MI and may be correlated to the disparity of cardiac system dynamics between healthy and MI subjects. ITD is employed to measure the variability of cardiac vector and the first PRCs are extracted as predominant PRCs which contain most of the cardiac vector's energy. Second, four levels discrete wavelet transform with third-order Daubechies (db3) wavelet function is employed to decompose the predominant PRCs into different frequency bands, which combines with three-dimensional phase space reconstruction to derive features. The properties associated with the cardiac system dynamics are preserved. Since the frequency components above 40 Hz are lack of use in ECG analysis, in order to reduce the feature dimension, the advisable sub-band (D4) is selected for feature acquisition. Third, neural networks are then used to model, identify and classify cardiac system dynamics between normal (healthy) and MI cardiac vector signals. The difference of cardiac system dynamics between healthy control and MI cardiac vector is computed and used for the detection of MI based on a bank of estimators. Finally, experiments are carried out on the PhysioNet PTB database to assess the effectiveness of the proposed method, in which conventional 12-lead and Frank XYZ leads ECG signal fragments from 148 patients with MI and 52 healthy controls were extracted. By using the tenfold cross-validation style, the achieved average classification accuracy is reported to be 98.20%. Results verify the effectiveness of the proposed method which can serve as a potential candidate for the automatic detection of MI in the clinical application.
RESUMO
Cardiovascular diseases (CVD) is the leading cause of human mortality and morbidity around the world, in which myocardial infarction (MI) is a silent condition that irreversibly damages the heart muscles. Currently, electrocardiogram (ECG) is widely used by the clinicians to diagnose MI patients due to its inexpensiveness and non-invasive nature. Pathological alterations provoked by MI cause slow conduction by increasing axial resistance on coupling between cells. This issue may cause abnormal patterns in the dynamics of the tip of the cardiac vector in the ECG signals. However, manual interpretation of the pathological alternations induced by MI is a time-consuming, tedious and subjective task. To overcome such disadvantages, computer-aided diagnosis techniques including signal processing and artificial intelligence tools have been developed. In this study we propose a novel technique for automatic detection of MI based on hybrid feature extraction and artificial intelligence tools. Tunable quality factor (Q-factor) wavelet transform (TQWT), variational mode decomposition (VMD) and phase space reconstruction (PSR) are utilized to extract representative features to form cardiac vectors with synthesis of the standard 12-lead and Frank XYZ leads. They are combined with neural networks to model, identify and detect abnormal patterns in the dynamics of cardiac system caused by MI. First, 12-lead ECG signals are reduced to 3-dimensional VCG signals, which are synthesized with Frank XYZ leads to build a hybrid 4-dimensional cardiac vector. Second, this vector is decomposed into a set of frequency subbands with a number of decomposition levels by using the TQWT method. Third, VMD is employed to decompose the subband of the 4-dimensional cardiac vector into different intrinsic modes, in which the first intrinsic mode contains the majority of the cardiac vector's energy and is considered to be the predominant intrinsic mode. It is selected to construct the reference variable for analysis. Fourth, phase space of the reference variable is reconstructed, in which the properties associated with the nonlinear cardiac system dynamics are preserved. Three-dimensional (3D) PSR together with Euclidean distance (ED) has been utilized to derive features, which demonstrate significant difference in cardiac system dynamics between normal (healthy) and MI cardiac vector signals. Fifth, cardiac system dynamics can be modeled and identified using neural networks, which employ the ED of 3D PSR of the reference variable as the input features. The difference of cardiac system dynamics between healthy control and MI cardiac vector is computed and used for the detection of MI based on a bank of estimators. Finally, data sets, which include conventional 12-lead and Frank XYZ leads ECG signal fragments from 148 patients with MI and 52 healthy controls from PTB diagnostic ECG database, are used for evaluation. By using the 10-fold cross-validation style, the achieved average classification accuracy is reported to be 97.98%. Currently, ST segment evaluation is one of the major and traditional ways for the MI detection. However, there exist weak or even undetectable ST segments in many ECG signals. Since the proposed method does not rely on the information of ST waves, it can serve as a complementary MI detection algorithm in the intensive care unit (ICU) of hospitals to assist the clinicians in confirming their diagnosis. Overall, our results verify that the proposed features may satisfactorily reflect cardiac system dynamics, and are complementary to the existing ECG features for automatic cardiac function analysis.