Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 50(7): 1859-1868, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177985

RESUMO

Background and Purpose- Early erythrolysis in the hematoma contributes to brain injury after intracerebral hemorrhage (ICH). This study investigated the effects of N-acetylheparin, a complement inhibitor, and aurin tricarboxylic acid, a membrane attack complex inhibitor, on early erythrolysis, brain iron deposition, and brain injury in aged rats. Methods- There were 3 parts in the study. First, aged (18 months old) male Fischer 344 rats had an ICH. The time course of erythrolysis in the hematoma was determined by T2* weighted magnetic resonance imaging, and the expression of CD163 was examined. Second, aged rats had an ICH with N-acetylheparin or vehicle. Rats were euthanized at days 1, 3, and 28 after magnetic resonance imaging (T2-, T2*-weighted, and T2* array) and behavioral tests. Brains were used for immunohistochemistry. Third, aged rats had an ICH with avaurin tricarboxylic acid or vehicle. The rats had magnetic resonance imaging and behavioral tests and were euthanized at day 3. Brains were used for immunohistochemistry. Results- Early erythrolysis occurred within the clot in aged F344 rats. There were increased numbers of CD163-positive cells after ICH. Almost all perihematomal CD163-positive cells were microglia/macrophages, while positive neurons were found more distant from the hematoma. Coinjection of N-acetylheparin attenuated erythrolysis, iron accumulation, CD163 expression, microglia activation, brain swelling, and neuronal death in the acute phase, as well as reducing brain atrophy and neurological deficits in the chronic phase. Coinjection of aurin tricarboxylic acid also reduced erythrolysis and ICH-induced brain injury. Conclusions- Inhibiting complement activation resulted in less erythrolysis and brain injury after ICH.


Assuntos
Ácido Aurintricarboxílico/uso terapêutico , Lesões Encefálicas/sangue , Lesões Encefálicas/tratamento farmacológico , Inativadores do Complemento/uso terapêutico , Hemólise , Heparina/análogos & derivados , Hemorragias Intracranianas/sangue , Hemorragias Intracranianas/tratamento farmacológico , Ataque Isquêmico Transitório/tratamento farmacológico , Envelhecimento , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Edema Encefálico/prevenção & controle , Eritrócitos , Heparina/uso terapêutico , Ativação de Macrófagos , Masculino , Microglia , Ratos , Ratos Endogâmicos F344 , Receptores de Superfície Celular/biossíntese
2.
Transl Stroke Res ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943026

RESUMO

Blood components released by erythrolysis play an important role in secondary brain injury and posthemorrhagic hydrocephalus (PHH) after intraventricular hemorrhage (IVH). The current study examined the impact of N-acetylheparin (NAH), a complement inhibitor, on early erythrolysis, PHH and iron accumulation in aged rats following IVH. This study, on 18-months-old male Fischer 344 rats, was in 3 parts. First, rats had an intracerebroventricular injection of autologous blood (IVH) mixed with NAH or saline, or saline alone. After MRI at four hours, Western blot and immunohistochemistry examined complement activation and electron microscopy choroid plexus and periventricular damage. Second, rats had an IVH with NAH or vehicle, or saline. Rats underwent serial MRI at 4 h and 1 day to assess ventricular volume and erythrolysis. Immunohistochemistry and H&E staining examined secondary brain injury. Third, rats had an IVH with NAH or vehicle. Serial MRIs on day 1 and 28 assessed ventricular volume and iron accumulation. H&E staining and immunofluorescence evaluated choroid plexus phagocytes. Complement activation was found 4 h after IVH, and co-injection of NAH inhibited that activation. NAH administration attenuated erythrolysis, reduced ventricular volume, alleviated periventricular and choroid plexus injury at 4 h and 1 day after IVH. NAH decreased iron accumulation, the number of choroid plexus phagocytes, and attenuated hydrocephalus at 28 days after IVH. Inhibiting complement can reduce early erythrolysis, attenuates hydrocephalus and iron accumulation after IVH in aged animals.

3.
Exp Ther Med ; 19(2): 913-922, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010252

RESUMO

Sepsis commonly progresses to disseminated intravascular coagulation and induces the activation of heparanase (HPA) and the shedding of endothelial glycocalyx constituents, including syndecan-1 (SDC-1) and heparan sulphate (HS). However, the degradation of glycocalyx and its association with coagulation disorders remains undetermined. The present study aimed to evaluate the effect of unfractionated heparin (UFH) and N-acetylheparin (NAH), which is a non-anticoagulant heparin derivative, on endothelial glycocalyx and coagulation function in a lipopolysaccharide (LPS)-induced sepsis rat model, and to compare the differences observed in coagulation function between UFH and NAH. Experimental rats were randomly assigned to four groups: Control; LPS; UFH + LPS; and NAH + LPS. Rats were administered UFH or NAH and subsequently, ~1 min later, administered LPS (10 mg/kg; intravenous). The blood and lung tissues of rats were collected 0.5, 2 and 6 h after LPS injection, and were used for subsequent analysis. The results demonstrated that HPA activity and SDC-1 and HS levels increased, and this increase was associated with inflammatory cytokines and coagulation/fibrinolysis markers in the sepsis rat model. Histopathological examination was performed, and the lung injury score and lung wet/dry ratio indicated that UFH and NAH also significantly improved lung tissue injury. The results of the ELISA analysis demonstrated that UFH and NAH treatment: i) significantly decreased the levels of inflammatory cytokines including tumor necrosis factor-α and interleukin-6; ii) inhibited HPA activity and protected the integrity of the glycocalyx, which was identified by decreased HS and SDC-1 levels; and iii) decreased the levels of prothrombin fragment 1+2, thrombin-antithrombin complex, and plasminogen activator inhibitor-1 and increased the levels of fibrinogen and antithrombin-III. Preconditioning with UFH decreased the plasma activated partial thromboplastin time. These results indicated that UFH and NAH may alleviate sepsis-induced coagulopathy, and this effect may have been due to an inhibition of HPA activity and decrease in the shedding of the endothelial glycocalyx.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa