RESUMO
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Assuntos
Transtorno Autístico/fisiopatologia , Disfunção Cognitiva/patologia , Fator de Iniciação Eucariótico 4G/fisiologia , Éxons/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neuroblastoma/patologia , Neurônios/patologia , Animais , Comportamento Animal , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogênese , Neurônios/metabolismo , Biossíntese de Proteínas , Splicing de RNA , Células Tumorais CultivadasRESUMO
Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.
Assuntos
Processamento Alternativo/fisiologia , Engenharia Genética/métodos , Sítios de Splice de RNA/fisiologia , Animais , Transtorno Autístico/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Éxons/fisiologia , Humanos , Camundongos , Proteínas do Tecido Nervoso , Neurogênese , Neurônios , Precursores de RNA/fisiologia , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA , Ribonucleoproteínas , Fatores de Processamento de Serina-Arginina , SpliceossomosRESUMO
A key challenge in understanding and ultimately treating autism is to identify common molecular mechanisms underlying this genetically heterogeneous disorder. Transcriptomic profiling of autistic brains has revealed correlated misregulation of the neuronal splicing regulator nSR100/SRRM4 and its target microexon splicing program in more than one-third of analyzed individuals. To investigate whether nSR100 misregulation is causally linked to autism, we generated mutant mice with reduced levels of this protein and its target splicing program. Remarkably, these mice display multiple autistic-like features, including altered social behaviors, synaptic density, and signaling. Moreover, increased neuronal activity, which is often associated with autism, results in a rapid decrease in nSR100 and splicing of microexons that significantly overlap those misregulated in autistic brains. Collectively, our results provide evidence that misregulation of an nSR100-dependent splicing network controlled by changes in neuronal activity is causally linked to a substantial fraction of autism cases.