RESUMO
This work rests on our recent report on the successful use of tissue nanotransfection (TNT) delivery of Ascl1, Brn2, and Myt1l (TNTABM) to directly convert skin fibroblasts into electrophysiologically active induced neuronal cells (iN) in vivo. Here we report that in addition to successful neurogenic conversion of cells, TNTABM caused neurotrophic enrichment of the skin stroma. Thus, we asked whether such neurotrophic milieu of the skin can be leveraged to rescue pre-existing nerve fibers under chronic diabetic conditions. Topical cutaneous TNTABM caused elevation of endogenous NGF and other co-regulated neurotrophic factors such as Nt3. TNTABM spared loss of cutaneous PGP9.5+ mature nerve fibers in db/db diabetic mice. This is the first study demonstrating that under conditions of in vivo reprogramming, changes in the tissue microenvironment can be leveraged for therapeutic purposes such as the rescue of pre-existing nerve fibers from its predictable path of loss under conditions of diabetes.
Assuntos
Neuropatias Diabéticas/terapia , Animais , Células Cultivadas , Eletroporação/métodos , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismoRESUMO
Enhanced glioma-stem-cell (GSC) motility and therapy resistance are considered to play key roles in tumor cell dissemination and recurrence. As such, a better understanding of the mechanisms by which these cells disseminate and withstand therapy could lead to more efficacious treatments. Here, we introduce a novel micro-/nanotechnology-enabled chip platform for performing live-cell interrogation of patient-derived GSCs with single-clone resolution. On-chip analysis revealed marked intertumoral differences (>10-fold) in single-clone motility profiles between two populations of GSCs, which correlated well with results from tumor-xenograft experiments and gene-expression analyses. Further chip-based examination of the more-aggressive GSC population revealed pronounced interclonal variations in motility capabilities (up to â¼4-fold) as well as gene-expression profiles at the single-cell level. Chip-supported therapy resistance studies with a chemotherapeutic agent (i.e., temozolomide) and an oligo RNA (anti-miR363) revealed a subpopulation of CD44-high GSCs with strong antiapoptotic behavior as well as enhanced motility capabilities. The living-cell-interrogation chip platform described herein enables thorough and large-scale live monitoring of heterogeneous cancer-cell populations with single-cell resolution, which is not achievable by any other existing technology and thus has the potential to provide new insights into the cellular and molecular mechanisms modulating glioma-stem-cell dissemination and therapy resistance.
Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Glioblastoma/patologia , Células-Tronco Neoplásicas/citologia , Animais , Apoptose , Humanos , Camundongos , Células Tumorais CultivadasRESUMO
Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Proteínas de Ligação a DNA/genética , DNA/administração & dosagem , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores de Transcrição/genética , Transfecção/métodos , Animais , Linhagem Celular , DNA/genética , Eletroporação/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Regulação para CimaRESUMO
A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 µm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.
Assuntos
Eletroporação/instrumentação , Eletroporação/métodos , Análise em Microsséries/instrumentação , Microfluídica/instrumentação , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Transfecção/métodos , Animais , DNA/metabolismo , Desenho de Equipamento , Fluorescência , Camundongos , Nanofios/ultraestrutura , Plasmídeos/metabolismoRESUMO
Micro/nanochannel electroporation can deliver gene/drug into single cell with precise dosage control and much higher cell viability compared to traditional bulk electroporation. However, single cell micro/nanochannel electroporation has the problems of low efficiency and complicated operation. By integrating microfluidic with micro/nanochannel electroporation, a large number of cells can be processed within a short time. In this chapter, we provide a detailed protocol of fabrication microfluidic nanochannel electroporation devices. The fabrication of this microfluidic nanochannel electroporation device integrates soft lithography, DNA combing and imprinting, and micromilling. This device is appropriate for gene/drug delivery to a batch of cells. It has the advantages of both the single cell nanochannel electroporation and microfluidic based cell manipulation. The procedures of device fabrication, holder fabrication, cell trapping, and electroporation are included in this protocol.
Assuntos
Eletroporação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Polímeros , Análise de Célula ÚnicaRESUMO
A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.