Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 97: 31-39, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597399

RESUMO

Cellulose nanocrystal films with either disordered or chiral nematic structures of varying helical pitch were investigated using 23Na solid-state nuclear magnetic resonance (NMR) spectroscopy. Spin lattice relaxation of 1H correlated with 23Na analyzed by indirect observation using polarization transfer from 1H nuclei to 23Na nuclei showed that the Na+ cations are well hydrated in the cellulose nanocrystal films. Linewidth analysis in solid-state 23Na NMR showed that the Na+ cations move in confined spaces, and that the Na+ cations in the film having disordered structure are more dynamic than in the films having ordered structure. From lineshape analysis of the 23Na 2D nutation NMR spectra, we can distinguish the Na+ environments within the ordered and disordered films, and find trends in anisotropic interaction parameters between ordered samples with different pitches. These are the first detailed 23Na NMR spectroscopic studies of CNC-Na+ films, and they show that this technique may be a powerful probe for characterizing the extent of order in nanocellulose samples.

2.
ACS Appl Mater Interfaces ; 16(9): 11627-11636, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381521

RESUMO

Halide perovskite nanocrystals (NCs), specifically CsPbBr3, have attracted considerable interest due to their remarkable optical properties for optoelectronic devices. To achieve high-efficiency light-emitting diodes (LEDs) based on CsPbBr3 nanocrystals (NCs), it is crucial to optimize both their photoluminescence quantum yield (PLQY) and carrier transport properties when they are deposited to form films on substrates. While the exchange of native ligands with didodecyl dimethylammonium bromide (DDAB) ligand pairs has been successful in boosting their PLQY, dense DDAB coverage on the surface of NCs should impede carrier transport and limit device efficiency. Following our previous work, here, we use oleyl phosphonic acid (OLPA) as a selective stripping agent to remove a fraction of DDAB from the NC surface and demonstrate that such stripping enhances carrier transport while maintaining a high PLQY. Through systematic optimization of OLPA dosage, we significantly improve the performance of CsPbBr3 LEDs, achieving a maximum external quantum efficiency (EQE) of 15.1% at 516 nm and a maximum brightness of 5931 cd m-2. These findings underscore the potential of controlled ligand stripping to enhance the performance of CsPbBr3 NC-based optoelectronic devices.

3.
J Colloid Interface Sci ; 636: 363-377, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638575

RESUMO

This study presents a novel method to correlate the mass and charge transfer kinetics during the electrophoretic deposition of nanocrystal films by using a purpose-built double quartz crystal microbalance combined with simultaneous current-measurement. Our data support a multistep process for film formation: generation of charged nanocrystal flux, charge transfer at the electrode, and polarization of neutral nanocrystals near the electrode surface. The polarized particles are then subject to dielectrophoretic forces that reduce diffusion away from the interface, generating a sufficiently high neutral particle concentration at the interface to form a film. The correlation of mass and charge transfer enables quantification of the nanocrystal charge, the fraction of charged nanocrystals, and the initial sticking coefficient of the particles. These quantities permit calculation of the film thickness, providing a theoretical basis for using concentration and voltage as process parameters to grow films of targeted thicknesses.

4.
ACS Nano ; 16(10): 16067-16076, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36121002

RESUMO

Microscale patterning of colloidal nanocrystal (NC) films is important for their integration in devices. Here, we introduce the direct optical patterning of all-inorganic NCs without the use of additional photosensitive ligands or additives. We determined that photoexposure of ligand-stripped, "bare" NCs in air significantly reduces their solubility in polar solvents due to photo-oxidation of surface ions. Doses as low as 20 mJ/cm2 could be used; the only obvious criterion for material selection is that the NCs need to have significant absorption at the irradiation wavelength. However, transparent NCs can still be patterned by mixing them with suitably absorbing NCs. This approach enabled the patterning of bare ZnSe, CdSe, ZnS, InP, CeO2, CdSe/CdS, and CdSe/ZnS NCs as well as mixtures of ZrO2 or HfO2 NCs with ZnSe NCs. Optical, X-ray photoelectron, and infrared spectroscopies show that solubility loss results from desorption of bound solvent due to photo-oxidation of surface ions. We also demonstrate two approaches, compatible with our patterning method, for modulating the porosity and refractive index of NC films. Block copolymer templating decreases the film density, and thus the refractive index, by introducing mesoporosity. Alternatively, hot isostatic pressing increases the packing density and refractive index of NC layers. For example, the packing fraction of a ZnS NC film can be increased from 0.51 to 0.87 upon hot isostatic pressing at 450 °C and 15 000 psi. Our findings demonstrate that direct lithography by photo-oxidation of bare NC surfaces is an accessible patterning method for facilitating the exploration of more complex NC device architectures while eliminating the influence of bulky or insulating surfactants.

5.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960940

RESUMO

The exploration of functional materials relies greatly on the understanding of material structures and nanotechnologies. In the present work, chiral nematic cellulose nanocrystal (CNC) films were prepared by incorporation with four types of amino acids (AAs, glycine, histidine, phenylalanine, and serine) via evaporation-induced self-assembly. The films present ideal iridescence and birefringence that can be tuned by the amount of AAs added. The intercalation of AAs enlarged the pitch values, contributing to the red-shift trend of the reflective wavelength. Among the AAs, serine presented the most compatible intercalation into cellulose crystals. Interestingly, histidine and phenylalanine composite films showed high shielding capabilities of UV light in diverse wavelength regions, exhibiting multi-optical functions. The sustainable preparation of chiral nematic CNC films may provide new strategies for materials production from biocompatible lignocellulose.

7.
ACS Appl Mater Interfaces ; 7(45): 25007-13, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26529572

RESUMO

Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

8.
J Phys Chem Lett ; 5(5): 782-6, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26274067

RESUMO

Photochemical charge generation, separation, and transport at nanocrystal interfaces are central to photoelectrochemical water splitting, a pathway to hydrogen from solar energy. Here, we use surface photovoltage spectroscopy to probe these processes in nanocrystal films of HCa2Nb3O10, a proven photocatalyst. Charge injection from the nanoparticles into the gold support can be observed, as well as oxidation and reduction of methanol and oxygen adsorbates on the nanosheet films. The measured photovoltage depends on the illumination intensity and substrate material, and it varies with illumination time and with film thickness. The proposed model predicts that the photovoltage is limited by the built-in potential of the nanosheet-metal junction, that is, the difference of Fermi energies in the two materials. The ability to measure and understand these light-induced charge separation processes in easy-to-fabricate films will promote the development of nanocrystal applications in photoelectrochemical cells, photovoltaics, and photocatalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa