Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Nano Lett ; 24(27): 8418-8426, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934472

RESUMO

Optical multiplexing technology plays a crucial role in various fields such as data storage, anti-counterfeiting, and time-resolved biological imaging. Nevertheless, employing single-wavelength phosphorescence for multiplexing often results in spectral overlap among the emission peaks of various channels, which can precipitate crosstalk and misinterpretation in the information-decoding process, thereby compromising the integrity and precision of the encrypted data. This paper proposes a time-divided colorful multiplexing technology based on phosphorescent carbon nanodots with different colors and lifetimes. Using different luminescence colors to symbolize varying information levels helps achieve multitiered information encryption and storage. By modulation of the lifetime and the emission wavelength, intricate information can be encoded, thereby enhancing the intricacy and security of the encryption mechanism. By assigning different data bits to each color, more information can be encoded in the same physical space. This method enables higher-density information storage and fortifies encryption, ensuring the compactness and security of information.

2.
Nano Lett ; 24(5): 1792-1800, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278136

RESUMO

A comprehensive approach for the construction of NIR-I/NIR-II nanofluorophores with exceptional brightness and excellent chemo- and photostability has been developed. This study first confirmed that the amphiphilic molecules with stronger hydrophobic moieties and weaker hydrophilic moieties are superior candidates for constructing brighter nanofluorophores, which are attributed to its higher efficiency in suppressing the intramolecular charge transfer/aggregation-caused fluorescence quenching of donor-acceptor-donor type fluorophores. The prepared nanofluorophore demonstrates a fluorescence quantum yield exceeding 4.5% in aqueous solution and exhibits a strong NIR-II tail emission up to 1300 nm. The superior performance of the nanofluorophore enabled the achievement of high-resolution whole-body vessel imaging and brain vessel imaging, as well as high-contrast fluorescence imaging of the lymphatic system in vivo. Furthermore, their potential for highly sensitive fluorescence detection of tiny tumors in vivo has been successfully confirmed, thus supporting their future applications in precise fluorescence imaging-guided surgery in the early stages of cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Corantes Fluorescentes/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
Nano Lett ; 24(7): 2264-2272, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324803

RESUMO

Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.


Assuntos
Pontos Quânticos , Carbono , Corantes Fluorescentes , Íons , Água
4.
Small ; 20(36): e2312218, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38716754

RESUMO

Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.

5.
Small ; : e2406908, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258366

RESUMO

The notorious polysulfide shuttling and uncontrollable Li-dendrite growth are the main obstacles to the marketization of Li-S batteries. Herein, a dual-functional material consisting of vacancy-rich quantum-sized Co nanodots anchored on a mesoporous carbon layer (v-Co/meso-C) is proposed. This material exposes more active sites to improve its reaction performance and simultaneously realizes excellent lithiophilicity and sulfiphilicity characteristics in Li-S electrochemistry. As Li metal deposition hosts, v-Co/meso-C shows small nucleation overpotential, low polarization, and ultra-long cycling stability in both half and symmetric cells, as confirmed by experimental studies. On the S cathode side, experimental and theoretical calculations demonstrate that v-Co/meso-C enhances the adsorption of polysulfides and boosts their catalytic conversion rate. This, in turn, suppresses the shuttle effect of polysulfides and improves sulfur utilization efficiency. Finally, a shuttle-free and dendrite-free v-Co/meso-C@Li//v-Co/meso-C@S full cell is fabricated, exhibiting excellent rate performance (739 mAh g-1 at 5.0 C) and good cyclability (capacity decay rate is 0.033% and 0.035% per cycle at 2.0 and 5.0 C, respectively). Even a pouch cell with high sulfur loading (5.5 mg cm-2) and lean electrolyte/sulfur (4.8 µL mg-1) can still work 50 cycles with 80% capacity retention rate. This study shows far-reaching implications in the design of dendrite-free, shuttle-free Li-S batteries.

6.
Small ; 20(12): e2307278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37943060

RESUMO

Cobalt (Co) is an efficient oxygen reduction reaction (ORR) catalyst but suffers from issues of easy deactivation and instability. Here, it shows that ZrO2 can stabilize Co through interface electron coupling and enables highly efficient 4e- ORR catalysis. Porous carbon nanofibers loaded with dispersed Co-nanodots (≈10 nm, 9.63 wt%) and ZrO2 nanoparticles are synthesized as the catalyst. The electron transfer from the metallic Co to ZrO2 causes interface-oriented electron enrichment that promotes the activation and conversion of O2, improving the efficiency of 4e- transfer. Moreover, the simulation results show that ZrO2 acts like an electron reservoir to store electrons from Co and slowly release them to the interface, solving the easy deactivation problem of Co. The catalyst exhibits a high half-wave potential (E1/2) of 0.84 V, which only decreases by 3.6 mV after 10 000 cycles, showing great stability. Particularly, the enhanced spin polarization of Co in a magnetic field reinforces the interface electron coupling that increases the E1/2 to 0.864 V and decreases the energy barrier of ORR from 0.81 to 0.63 eV, confirming that the proposed strategy is effective for constructing efficient and stable ORR catalysts.

7.
Small ; 20(5): e2304673, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37731094

RESUMO

The aggregation-caused quenching has always limited the high concentration and solid-state applications of carbon nanodots. While the aggregation-induced emission effect, dominated by intramolecular motion, may be an effective means to solve this problem. Here, hydrophobic solid-state red-light carbon nanodots (M-CDs) with 95% yield are synthesized by a one-step hydrothermal method using 2,2'-dithiodibenzoic acid as the carbon source and manganese acetate as the dopant source. The disulfide bond of 2,2'-dithiodibenzoic acid serves as the symmetry center of molecular rotation and Mn catalyzes the synthesis of M-CDs, which promotes the formation of the central graphitic carbon structure. The M-CDs/agar hydrogel composites can achieve fluorescence transition behavior because of the special fluorescence transition properties of M-CDs. When this composite hydrogel is placed in water, water molecules contact with M-CDs through the network structure of the hydrogels, making the aggregated hydrogels of M-CDs fluorescence orange-red under 365 nm excitation. While in dimethyl sulfoxide, water molecules in the hydrogels network are replaced and the M-CDs fluoresce blue when dispersed, providing a potential application in information encryption. In addition, high-performance monochromatic light-emitting diode (LED) devices are prepared by compounding M-CDs with epoxy resin and coating them on 365 nm LED chips.

8.
Small ; 20(38): e2402882, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38773890

RESUMO

High carrier separation efficiency and rapid surface catalytic reaction are crucial for enhancing catalytic CO2 photoreduction reaction. Herein, integrated surface decoration strategy with oxygen vacancies (Ov) and anchoring CuxO (1 < x < 2) nanodots below 10 nm is realized on Bi2MoO6 for promoting CO2 photoreduction performance. The charge interaction between Ov and anchored CuxO enables the formation of enhanced internal electric field, which provides a strong driving force for accelerating the separation of photocharge carriers on the surface of Bi2MoO6 (ηsurf ≈71%). They can also cooperatively reduce the surface work function of Bi2MoO6, facilitating the migration of carrier to the surface. Meanwhile, surface-integrated Ov and CuxO nanodots allowing dual catalytic sites strengthens the adsorption and activation CO2 into *CO2 over Bi2MoO6, considerably boosting the progression of CO2 conversion process. In the absence of co-catalyst or sacrificial agent, Bi2MoO6 with Ov and CuxO nanodots achieves a photocatalytic CO generation rate of 12.75 µmol g-1 h-1, a remarkable increase of over ≈15 times that of the original counterpart. This work provides a new idea for governing charge movement behaviors and catalytic reaction thermodynamics on the basis of synergistic improvement of electric field and active sites by coupling of the internal defects and external species.

9.
Small ; : e2403994, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350458

RESUMO

Bright near-infrared (NIR) fluorescent probes play an important role in in vivo optical imaging. Here, renal-clearable nanodots prepared from Aza-BODIPY are reported fluorophores for multiphoton brain imaging. The design of donor-acceptor-donor (D-A-D) type conjugated structures endowed the fluorophores with large three-photon absorption cross-section for both 1620 and 2200 nm excitation. The side chain modification and lipid encapsulation yield ultrasmall nanodots (≈4 nm) and a high fluorescence quantum yield (≈0.35) at 720 nm emission in the aqueous phase. The measured three-photon action cross-section of a single Aza-BODIPY fluorophore in the nanodots is ≈30 times higher than the commonly used Sulforhodamine 101 dye. Three-photon deep brain imaging of subcortical structures is demonstrated, reaching a depth of 1900 µm below the brain surface in a live mouse study. The nanodots enabled blood flow measurement at a depth of 1617 µm using line scanning three-photon microscopy (3PM). This work provides superior fluorescent probes for multiphoton deep-brain imaging.

10.
Small ; : e2404142, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148197

RESUMO

As of the present time, the in-depth study of the structure-activity relationship between electronic configuration and CO2 photoreduction performance is often overlooked. Herein, a series of Cux species modified CeO2 nanodots are constructed in situ by flame spray pyrolysis (FSP) to achieve an efficient photocatalytic CO2-to-C2 conversion with an electron utilization of up to 142.5 µmol g-1. Through an in-depth study of the electronic behavior and catalytic pathways, it is found that the Cu0/Cu+ species in the coexistence state of Cu0/Cu+/Cu2+ can optimize the energy band structure, photocurrent stability, and provide a kinetic basis for the active surface catalytic reaction process that requires the conversion of multiple electrons into C2 products, which ultimately enhances the CO2-to-C2H6 photoreduction by 3.8-fold and that for CO2-to-C2H4 photoreduction by 5.2-fold. Besides, the Cu2+ species in the coexistence state of Cu0/Cu+/Cu2+ are able to regulate the electronic behavior and the choice of the catalytic pathway, enabling the transitions between CO2-to-C2H6 and CO2-to-C2H4. This work indicates that electronic configuration optimization is an effective strategy to significantly enhance the CO2 photoreduction performance and provides new ideas for the design and synthesis of high-performance heterostructure photocatalysts.

11.
Small ; 20(32): e2311840, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470189

RESUMO

With the recently-booming hydrogen (H2) economy by green H2 as the energy carriers and the newly-emerged exhaled diagnosis by human organ-metabolized H2 as a biomarker, H2 sensing is simultaneously required with fast response, low detection limit, and tolerant stability against humidity, switching, and poisoning. Here, reliable H2 sensing has been developed by utilizing indium oxide nanocubes decorated with palladium and gold nanodots (Pd-Au NDs/In2O3 NCBs), which have been synthesized by combined hydrothermal reaction, annealing, and chemical bath deposition. As-prepared Pd-Au NDs/In2O3 NCBs are observed with surface-enriched NDs and nanopores. Beneficially, Pd-Au NDs/In2O3 NCBs show 300 ppb-low detection limit, 5 s-fast response to 500 ppm H2, 75%RH-high humidity tolerance, and 56 days-long stability at 280 °C. Further, Pd-Au NDs/In2O3 NCBs show excellent stability against switching sensing response, and are tolerant to H2S poisoning even being exposed to 10 ppm H2S at 280 °C. Such excellent H2 sensing may be attributed to the synergistic effect of the boosted Pd-Au NDs' spillover effect and interfacial electron transfer, increased adsorption sites over the porous NCBs' surface, and utilized Pd NDs' affinity with H2 and H2S. Practically, Pd-Au NDs/In2O3 NCBs are integrated into the H2 sensing device, which can reliably communicate with a smartphone.

12.
J Fluoresc ; 34(2): 945-960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37436616

RESUMO

In this study, we investigated the reactivity of γ-graphyne (Gp) and its derivatives, Gp-CH3, Gp-COOH, Gp-CN, Gp-NO2, and Gp-SOH, for the removal of toxic heavy metal ions (Hg+ 2, Pb+ 2, and Cd+ 2) from wastewater. From the analysis of the optimized structures, it was observed that all the compounds exhibited planar geometry. The dihedral angles (C9-C2-C1-C6 and C9-C2-C1-C6) were approximately 180.00°, indicating planarity in all molecular arrangements. To understand the electronic properties of the compounds, the HOMO (EH) and LUMO (EL) energies were calculated, and their energy gaps (Eg) were determined. The EH and EL values ranged between - 6.502 and - 8.192 eV and - 1.864 and - 3.773 eV, respectively, for all the compounds. Comparing the EH values, Gp-NO2 exhibited the most stable HOMO, while Gp-CH3 had the least stable structure. In terms of EL values, Gp-NO2 had the most stable LUMO, while Gp-CH3 was the least stable. The Eg values followed the order: Gp-NO2 < Gp-COOH < Gp-CN < Gp-SOH < Gp-CH3 < Gp, with Gp-NO2 (4.41 eV) having the smallest energy gap. The density of states (DOS) analysis showed that the shape and functional group modifications affected the energy levels. Functionalization with electron-withdrawing (CN, NO2, COOH, SOH) or electron-donating (CH3) groups reduced the energy gap. To specifically target the removal of heavy metal ions, the Gp-NO2 ligand was selected for its high binding energy. Complexes of Gp-NO2-Cd, Gp-NO2-Hg, and Gp-NO2-Pb were optimized, and their properties were analyzed. The complexes were found to be planar, with metal-ligand bond distances within the range of 2.092→3.442 Å. The Gp-NO2-Pb complex exhibited the shortest bond length, indicating a stronger interaction due to the smaller size of Pb+ 2. The computed adsorption energy values (Eads) indicated the stability of the complexes, with values ranging from - 0.035 to -4.199 eV. Non-covalent interaction (NCI) analysis was employed to investigate intermolecular interactions in Gp-NO2 complexes. The analysis revealed distinct patterns of attractive and repulsive interactions, providing valuable insights into the binding preferences and steric effects of heavy metals.

13.
J Fluoresc ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869708

RESUMO

In this study, we present an economical and efficient synthesis method for carbon nanodots (CNDs) derived from cinnamon bark wood powder, with the incorporation of L-arginine as a dopant at varying ratios (Cinnamon : L-Arginine - 1:0.25, 1:0.5) via a hydrothermal reaction. Extensive structural and optical characterization was conducted through techniques such as FTIR, XRD, HR-TEM, DLS, UV-Vis, and PL spectra, providing a comprehensive understanding of the properties of CNDs and doped-CNDs. Quantum yields (QY) were quantified for synthesized materials, contributing to the assessment of their fluorescence efficiency. The synthesized CNDs were successfully applied for bioimaging of yeast cells, employing fluorescence microscopy to visualize their interaction. Remarkably, L-arginine-doped CNDs exhibited enhanced fluorescence, showcasing the influence of the dopant. The nature of these CNDs was rigorously investigated, confirming their biocompatibility. Notably, this work presents a novel approach to synthesizing CNDs from a renewable and sustainable source, cinnamon bark wood powder, while exploring the effects of L-arginine doping on their optical and biological properties. This work not only contributes to the synthesis and characterization of CNDs but also highlights their potential for diverse applications, emphasizing their structural, optical, and biological attributes. The findings underscore the versatility of CNDs derived from cinnamon bark wood powder and their potential for advancing biotechnological and imaging applications.

14.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429826

RESUMO

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Molibdênio/farmacologia , Molibdênio/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrogênio/metabolismo , Autofagia
15.
J Nanobiotechnology ; 22(1): 571, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294724

RESUMO

Thyroid cancer is one of the most common endocrine malignancies in clinical practice. Traditional surgery and radioactive iodine ablation have poor treatment results for poorly differentiated thyroid cancer, and there is a risk of metastasis and recurrence. In this study, caffeic acid, a natural herbal extract with certain biological activity, has been as precursor to prepare new caffeic acid carbon nanodots via a one-step hydrothermal method. The caffeic acid carbon nanodots retains part of the structure and biological activity of caffeic acid, and have good biocompatibility, water solubility and stability. The construction of the carbon nanodots could effectively improve their bio-absorption rate and the efficacy. In vitro cell experiments showed that low-dose caffeic acid carbon nanodots had a significant inhibitory effect on poorly differentiated papillary thyroid carcinoma BCPAP cells. At low concentrations of 16 µg/mL, the inhibition rate of human thyroid cancer cells BCPAP was ~ 79%. The anti-tumor mechanism was predicted and verified by transcriptome, real-time quantitative PCR and western blot experiments. The caffeic acid carbon nanodots showed to simultaneously downregulate the expression of KRAS, p-BRAF, p-MEK1 and p-ERK1/2, the four continuous key proteins in a MAPK classical signaling pathway. In vivo experiments further confirmed the caffeic acid carbon nanodots could significantly inhibit the tumorigenicity of xenografts in papillary thyroid carcinoma at quite low doses. This piece of work provides a new nanomedicine and therapeutic strategy for highly resistant poorly differentiated papillary thyroid carcinoma.


Assuntos
Ácidos Cafeicos , Carbono , Camundongos Nus , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Humanos , Animais , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Carbono/química , Camundongos , Camundongos Endogâmicos BALB C , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Feminino
16.
Nanomedicine ; 60: 102757, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889854

RESUMO

Surgical site infection (SSI) significantly affects patient recovery time, health outcomes and quality of life which is closely associated with the use of implants or mesh. Sutures are the most frequently used implants that play a significant role in the development of SSI. Studies have demonstrated that the administration of effective bactericidal and anti-inflammatory treatments can significantly decrease the incidence of SSI. To address this concern, a versatile suture was engineered by coating MoO3-X nanodots in this study. The incorporation of MoO3-X nanodots endowed the suture with desirable antibacterial and anti-inflammatory properties that were evaluated in in vitro and in vivo experiments. The results showed its remarkable ability to facilitate wound healing and prevent SSI through its dual action of combating bacterial infection and reducing inflammation. These findings highlight the promising potential of this multifunctional surgical suture as a versatile tool to promote better outcomes in surgical procedures.


Assuntos
Antibacterianos , Anti-Inflamatórios , Infecção da Ferida Cirúrgica , Suturas , Antibacterianos/farmacologia , Antibacterianos/química , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Camundongos , Humanos , Cicatrização/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas/química , Óxidos/química , Óxidos/farmacologia , Masculino , Staphylococcus aureus/efeitos dos fármacos
17.
Mikrochim Acta ; 191(2): 99, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228947

RESUMO

Xanthine-functionalized molybdenum oxide nanodots (X-MoO3-x NDs) with peroxidase (POD)-like activity were developed for selective, sensitive, and facile colorimetric quantification of xanthine oxidase (XO). Xanthine functionalization can not only be favorable for the successful nanozyme preparation, but also for the specific recognition of XO as well as the simultaneous generation of hydrogen peroxide, which was subsequently transformed into hydroxyl radical to oxidize the chromogenic reagent based on the POD-like catalysis. Under the optimized conditions, the colorimetric biosensing platform was established for XO assay without addition of further substrates, showing good linearity relationship between absorbance difference (ΔA) and XO concentrations in the range 0.05-0.5 U/mL (R2 = 0.998) with a limit of detection (LOD) of 0.019 U/mL. The quantification of XO occurs in 25 min, which is superior to the previously reported and commercial XO assays. The proposed method has been successfully used in the assay of human serum samples, showing its high potential in the field of clinical monitoring.


Assuntos
Colorimetria , Xantina Oxidase , Humanos , Molibdênio , Antioxidantes , Xantina
18.
Mikrochim Acta ; 191(5): 265, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625451

RESUMO

Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 µM, and the limit of detection (LOD) was ~ 0.13 µM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.


Assuntos
Encéfalo , Ácidos Cafeicos , Polietilenos , Polipropilenos , Privação do Sono , Animais , Camundongos , Complexo de Golgi , Suplementos Nutricionais
19.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060996

RESUMO

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

20.
Nano Lett ; 23(24): 11755-11762, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091579

RESUMO

The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 µm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.


Assuntos
Fibroínas , Frutas/microbiologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa