Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2321958121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748584

RESUMO

Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.

2.
Proc Natl Acad Sci U S A ; 121(18): e2320242121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657046

RESUMO

The brain's remarkable and efficient information processing capability is driving research into brain-inspired (neuromorphic) computing paradigms. Artificial aqueous ion channels are emerging as an exciting platform for neuromorphic computing, representing a departure from conventional solid-state devices by directly mimicking the brain's fluidic ion transport. Supported by a quantitative theoretical model, we present easy-to-fabricate tapered microchannels that embed a conducting network of fluidic nanochannels between a colloidal structure. Due to transient salt concentration polarization, our devices are volatile memristors (memory resistors) that are remarkably stable. The voltage-driven net salt flux and accumulation, that underpin the concentration polarization, surprisingly combine into a diffusionlike quadratic dependence of the memory retention time on the channel length, allowing channel design for a specific timescale. We implement our device as a synaptic element for neuromorphic reservoir computing. Individual channels distinguish various time series, that together represent (handwritten) numbers, for subsequent in silico classification with a simple readout function. Our results represent a significant step toward realizing the promise of fluidic ion channels as a platform to emulate the rich aqueous dynamics of the brain.

3.
Proc Natl Acad Sci U S A ; 121(2): e2313616121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165939

RESUMO

Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.

4.
Proc Natl Acad Sci U S A ; 120(25): e2221304120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307490

RESUMO

Liquid and ionic transport through nanometric structures is central to many phenomena, ranging from cellular exchanges to water resource management or green energy conversion. While pushing down toward molecular scales progressively unveils novel transport behaviors, reaching ultimate confinement in controlled systems remains challenging and has often involved 2D Van der Waals materials. Here, we propose an alternative route which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinement. This soft-matter-inspired approach is based on the spontaneous formation of a molecularly thin liquid film onto fully wettable substrates in contact with the vapor phase of the liquid. Using silicon dioxide substrates, water films ranging from angstrom to nanometric thicknesses are formed in this manner, and ionic transport within the film can then be measured. Performing conductance measurements as a function of confinement in these ultimate regimes reveals a one-molecule thick layer of fully hindered transport nearby the silica, above which continuum, bulk-like approaches account for experimental results. Overall, this work paves the way for future investigations of molecular scale nanofluidics and provides insights into ionic transport nearby high surface energy materials such as natural rocks and clays, building concretes, or nanoscale silica membranes used for separation and filtering.

5.
Nano Lett ; 24(20): 6192-6200, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38666542

RESUMO

Creating artificial synapses that can interact with biological neural systems is critical for developing advanced intelligent systems. However, there are still many difficulties, including device morphology and fluid selection. Based on Micro-Electro-Mechanical System technologies, we utilized two immiscible electrolytes to form a liquid/liquid interface at the tip of a funnel nanochannel, effectively enabling a wafer-level fabrication, interactions between multiple information carriers, and electron-to-chemical signal transitions. The distinctive ionic transport properties successfully achieved a hysteresis in ionic transport, resulting in adjustable multistage conductance gradient and synaptic functions. Notably, the device is similar to biological systems in terms of structure and signal carriers, especially for the low operating voltage (200 mV), which matches the biological neural potential (∼110 mV). This work lays the foundation for realizing the function of iontronics neuromorphic computing at ultralow operating voltages and in-memory computing, which can break the limits of information barriers for brain-machine interfaces.


Assuntos
Nanotecnologia , Sinapses , Sinapses/fisiologia , Nanotecnologia/instrumentação , Eletrólitos/química , Nanoestruturas/química , Neurônios/fisiologia , Condutividade Elétrica
6.
Nano Lett ; 24(27): 8268-8276, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940535

RESUMO

The elegance and accuracy of biological ion channels inspire the fabrication of artificial devices with similar properties. Here, we report the fabrication of iontronic devices capable of delivering ions at the nanomolar (nmol) level of accuracy. The triangular nanofluidic device prepared with reconstructed vanadium pentoxide (VO) membranes of thickness 45 ± 5.5 µm can continuously deliver K+, Na+, and Ca2+ ions at the rate of 0.44 ± 0.24, 0.35 ± 0.06, and 0.03 nmol/min, respectively. The ionic flow rate can be further tuned by modulating the membrane thickness and salt concentration at the source reservoir. The triangular VO device can also deliver ions in minuscule doses (∼132 ± 9.7 nmol) by electrothermally heating (33 °C) with a nichrome wire (NW) or applying light of specific intensities. The simplicity of the fabrication process of reconstructed layered material-based nanofluidic devices allows the design of complicated iontronic devices such as the three-terminal-Ni-VO (3T-Ni-VO) devices.

7.
Nano Lett ; 24(15): 4618-4624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588453

RESUMO

Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.

8.
Q Rev Biophys ; 55: e12, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203227

RESUMO

Nanofluidic structures have over the last two decades emerged as a powerful platform for detailed analysis of DNA on the kilobase pair length scale. When DNA is confined to a nanochannel, the combination of excluded volume and DNA stiffness leads to the DNA being stretched to near its full contour length. Importantly, this stretching takes place at equilibrium, without any chemical modifications to the DNA. As a result, any DNA can be analyzed, such as DNA extracted from cells or circular DNA, and it is straight-forward to study reactions on the ends of linear DNA. In this comprehensive review, we first give a thorough description of the current understanding of the polymer physics of DNA and how that leads to stretching in nanochannels. We then describe how the versatility of nanofabrication can be used to design devices specifically tailored for the problem at hand, either by controlling the degree of confinement or enabling facile exchange of reagents to measure DNA-protein reaction kinetics. The remainder of the review focuses on two important applications of confining DNA in nanochannels. The first is optical DNA mapping, which provides the genomic sequence of intact DNA molecules in excess of 100 kilobase pairs in size, with kilobase pair resolution, through labeling strategies that are suitable for fluorescence microscopy. In this section, we highlight solutions to the technical aspects of genomic mapping, including the use of enzyme-based labeling and affinity-based labeling to produce the genomic maps, rather than recent applications in human genetics. The second is DNA-protein interactions, and several recent examples of such studies on DNA compaction, filamentous protein complexes, and reactions with DNA ends are presented. Taken together, these two applications demonstrate the power of DNA confinement and nanofluidics in genomics, molecular biology, and biophysics.


Assuntos
DNA , Polímeros , Humanos , DNA/genética , Microscopia de Fluorescência , Mapeamento Cromossômico , Genômica , Nanotecnologia
9.
Small ; : e2402188, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899397

RESUMO

Ionic diodes provide ionic current rectification (ICR), which is useful for micro-/nanofluidic devices for ionic current-mediated applications. However, the modulation of ICR is not fully developed, and current challenges include limited active control and localized modulation for further multiplexing of micro-/nanofluidic ionic diodes. Herein, a microfluidic device integrated with particle-assembly-based ionic diodes (PAIDs) and a gas-flow channel above them is presented. Exploiting in-situ gas permeation through a polymeric film, precise control over the physiochemical conditions of the nanopores within the PAIDs, leading to the modulation of ICR is demonstrated. The investigation not only characterizes the rectification properties of the PAIDs but also unveils their capacitor-like behavior and the ability to actively modulate ICR using various gas flows. Furthermore, the reversible modulation of ICR through dynamic switching of gas-dissolved solutions, enabling ion-signal amplification is showcased. This pioneering approach of in situ gas-permeation offers programmable manipulation of ion transport along PAIDs, thereby positioning ionic diodes as versatile nanofluidic components. Looking ahead, the development of multiplexed PAIDs in an addressable manner on a chip holds promise for practical applications across diverse fields, including ion signaling, ion-based logic, chemical reactors, and (bio)chemical sensing.

10.
Electrophoresis ; 45(3-4): 244-265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948329

RESUMO

Water flowing at a charged surface may produce electricity, known as streaming current/potentials, which may be traced back to the 19th century. However, due to the low gained power and efficiencies, the energy conversion from streaming current was far from usable. The emergence of micro/nanofluidic technology and nanomaterials significantly increases the power (density) and energy conversion efficiency. In this review, we conclude the fundamentals and recent progress in electrical double layers at the charged surface. We estimate the generated power by hydrodynamic energy dissipation in multi-scaling flows considering the viscous systems with slipping boundary and inertia systems. Then, we review the coupling of volume flow and current flow by the Onsager relation, as well as the figure of merits and efficiency. We summarize the state-of-the-art of electrokinetic energy conversions, including critical performance metrics such as efficiencies, power densities, and generated voltages in various systems. We discuss the advantages and possible constraints by the figure of merits, including single-phase flow and flying droplets.


Assuntos
Nanoestruturas , Água , Eletricidade
11.
Electrophoresis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962855

RESUMO

Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38825624

RESUMO

PURPOSE: This study compared the results of the new Sysmex PA-100 AST System, a point-of-care analyser, with routine microbiology for the detection of urinary tract infections (UTI) and performance of antimicrobial susceptibility tests (AST) directly from urine. METHODS: Native urine samples from 278 female patients with suspected uncomplicated UTI were tested in the Sysmex PA-100 and with reference methods of routine microbiology: urine culture for bacteriuria and disc diffusion for AST. RESULTS: The analyser delivered bacteriuria results in 15 min and AST results within 45 min. Sensitivity and specificity for detection of microbiologically confirmed bacteriuria were 84.0% (89/106; 95% CI: 75.6-90.4%) and 99.4% (155/156; 95% CI: 96.5-100%), respectively, for bacterial species within the analyser specifications. These are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis and Staphylococcus saprophyticus, which are common species causing uncomplicated UTI. Overall categorical agreement (OCA) for AST results for the five antimicrobials tested in the Sysmex PA-100 (amoxicillin/clavulanic acid, ciprofloxacin, fosfomycin, nitrofurantoin and trimethoprim) ranged from 85.4% (70/82; 95%CI: 75.9-92.2%) for ciprofloxacin to 96.4% (81/84; 95% CI: 89.9-99.3%) for trimethoprim. The Sysmex PA-100 provided an optimal treatment recommendation in 218/278 cases (78.4%), against 162/278 (58.3%) of clinical decisions. CONCLUSION: This first clinical evaluation of the Sysmex PA-100 in a near-patient setting demonstrated that the analyser delivers phenotypic AST results within 45 min, which could enable rapid initiation of the correct targeted treatment with no further adjustment needed. The Sysmex PA-100 has the potential to significantly reduce ineffective or unnecessary antibiotic prescription in patients with UTI symptoms.

13.
Nano Lett ; 23(10): 4226-4233, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159839

RESUMO

Specific molecular interactions underlie unexpected and useful phenomena in nanofluidic systems, but these require descriptions that go beyond traditional macroscopic hydrodynamics. In this letter, we demonstrate how equilibrium molecular dynamics simulations and linear response theory can be synthesized with hydrodynamics to provide a comprehensive characterization of nanofluidic transport. Specifically, we study the pressure driven flows of ionic solutions in nanochannels comprised of two-dimensional crystalline substrates made from graphite and hexagonal boron nitride. While simple hydrodynamic descriptions do not predict a streaming electrical current or salt selectivity in such simple systems, we observe that both arise due to the intrinsic molecular interactions that act to selectively adsorb ions to the interface in the absence of a net surface charge. Notably, this emergent selectivity indicates that these nanochannels can serve as desalination membranes.

14.
Nano Lett ; 23(5): 1629-1636, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826991

RESUMO

An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle's size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.

15.
Nano Lett ; 23(2): 389-397, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602909

RESUMO

Recent measurements of fluids under extreme confinement, including water within narrow carbon nanotubes, exhibit marked deviations from continuum theoretical descriptions. In this work, we generate precise carbon nanotube replicates that are filled with water, closed from external mass transfer, and studied over a wide temperature range by Raman spectroscopy. We study segments that are empty, partially filled, and completely filled with condensed water from -80 to 120 °C. Partially filled, nanodroplet states contain submicron vapor-like and liquid-like domains and are analyzed using a Clausius-Clapeyron-type model, yielding heats of condensation of water inside closed 1.32 nm diameter carbon nanotubes (3.32 ± 0.10 kJ/mol and 3.72 ± 0.11 kJ/mol) and 1.45 nm diameter carbon nanotubes (3.50 ± 0.07 kJ/mol) that are lower than the bulk enthalpy of vaporization and closer to the bulk enthalpy of fusion. Favored partial filling fractions are calculated, highlighting the effect of subnanometer changes in confining diameter on fluid properties and suggesting the promise of molecular engineering of nanoconfined liquid/vapor interfaces for water treatment or membrane distillation.

16.
Nano Lett ; 23(10): 4464-4470, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154839

RESUMO

Classical nanofluidic frameworks account for the confined fluid and ion transport under an electrostatic field at the solid-liquid interface, but the electronic property of the solid is often overlooked. Harvesting the interaction of the nanofluidic transport with the electron transport in solid requires a route effectively coupling ion and electron dynamics. Here we report a nanofluidic analogy of Coulomb drag for exploring the dynamic ion-electron interactions at the liquid-graphene interface. An induced electric current in graphene by ionic flow with no bias directly applied to the graphene channel is observed experimentally, featuring an opposite electron current direction to the ion current. Our experiments and ab initio calculations show that the current generation stems from the confined ion-electron interactions via a nanofluidic Coulomb drag mechanism. Our findings may open up a new dimension for nanofluidics and transport control by ion-electron coupling.

17.
Nano Lett ; 23(24): 11662-11668, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064458

RESUMO

The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.

18.
Nano Lett ; 23(3): 1010-1016, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36693172

RESUMO

Inspired by natural photosynthesis, light has become an emerging ionic behavior regulator and ion-pumping source. Nanoprocessing technology has allowed the bridge between the light-regulated nanofluids and the optoelectronic properties of two-dimensional (2D) materials, which inspires applications like energy harvesting and enhances fundamental understandings in nanofluidics. However, unlike light-induced ion pumping based on densely layered membranes with multiple nanochannels, experimental implementation on atomically thin materials featuring only a single nanochannel remains challenging. Here, we report light-induced ion pumping based on a single artificial heterojunction nanopore. Under light illumination, the induced current through a single nanopore reaches tens of picoamperes. The hole-electron separation originating from the optoelectrical property of a van der Waals PN junction is proposed to capture the light-driven ion transport. Further, different methods are adopted to modify the ion behavior and response time, presenting potential applications in fluidic photoenergy harvesting, photoelectric ion transport control, and bionic artificial neurons.

19.
Angew Chem Int Ed Engl ; : e202409349, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962957

RESUMO

Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6~20 nm), as well as low charge density (<4.5 mC m-2). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m-2). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×103 A m-2, surpassing  previously nanofluidic membranes. In practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl-, contributing to an outstanding power density of ~55 W m-2. Theoretical calculations reveal that the large quantity of anion transport sites act as binding sites evenly located in the positively charged N-containing pyridine rings.

20.
Angew Chem Int Ed Engl ; 63(4): e202314528, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38037863

RESUMO

Porous solids often contain complex pore networks with pores of various sizes. Tracking individual fluorescent probes as they diffuse through porous materials can be used to characterize pore networks at tens of nanometers resolution. However, understanding the motion behavior of fluorescent probes in confinement is crucial to reliably derive pore network properties. Here, we introduce well-defined lithography-made model pores developed to study probe behavior in confinement. We investigated the influence of probe-host interactions on diffusion and trapping of confined single-emitter quantum-dot probes. Using the pH-responsiveness of the probes, we were able to largely suppress trapping at the pore walls. This enabled us to define experimental conditions for mapping of the accessible pore space of a one-dimensional pore array as well as a real-life polymerization-catalyst-support particle.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa