Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(25): e2001035, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32406188

RESUMO

Heavy metal ions (HMIs) are one of the major environmental pollution problems currently faced. To monitor and control HMIs, rapid and reliable detection is required. Electrochemical analysis is one of the promising methods for on-site detection and monitoring due to high sensitivity, short response time, etc. Recently, nanometal oxides with special surface physicochemical properties have been widely used as electrode modifiers to enhance sensitivity and selectivity for HMIs detection. In this work, recent advances in the electrochemical detection of HMIs using nanometal oxides, which are attributed to specific crystal facets and phases, surficial defects and vacancies, and oxidation state cycle, are comprehensively summarized and discussed in aspects of synthesis, characterization, electroanalysis application, and mechanism. Moreover, the challenges and opportunities for the development and application of nanometal oxides with functional surface physicochemical properties in electrochemical determination of HMIs are presented.

2.
J Occup Environ Hyg ; 12(7): 469-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738602

RESUMO

This study characterized potential inhalation exposures of workers to nanometal oxides associated with industrial wastewater treatment processes in a semiconductor research and development facility. Exposure assessment methodology was designed to capture aerosolized engineered nanomaterials associated with the chemical mechanical planarization wafer polishing process that were accessible for worker contact via inhalation in the on-site wastewater treatment facility. The research team conducted air sampling using a combination of filter-based capture methods for particle identification and characterization and real-time direct-reading instruments for semi-quantitation of particle number concentration. Filter-based samples were analyzed using electron microscopy and energy-dispersive x-ray spectroscopy while real-time particle counting data underwent statistical analysis. Sampling conducted over 14 months included 5 discrete sampling series events for 7 job tasks in coordination with on-site employees. The number of filter-based samples captured for analysis by electron microscopy was: 5 from personal breathing zone, 4 from task areas, and 3 from the background. Direct-reading instruments collected data for 5 sample collection periods in the task area and the background, and 2 extended background collection periods. Engineered nanomaterials of interest (Si, Al, Ce) were identified by electron microscopy in filter-based samples from all areas of collection, existing as agglomerates (>500 nm) and nanoparticles (100 nm-500 nm). Particle counts showed an increase in number concentration during and after selected tasks above background. While additional data is needed to support further statistical analysis and determine trends, this initial investigation suggests that nanoparticles used or generated by chemical mechanical planarization become aerosolized and may be accessible for inhalation exposures by workers in wastewater treatment facilities. Additional research is needed to further quantify the level of exposure and determine the potential human health impacts.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanoestruturas/análise , Exposição Ocupacional/análise , Semicondutores , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/análise , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Nanoestruturas/química , Óxidos/análise , Óxidos/química , Material Particulado/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
3.
Int J Biol Macromol ; 105(Pt 1): 769-776, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28743573

RESUMO

New and durable multifunctional properties of cotton/polyester blended fabrics were developed through loading of chitosan (Cs) and various metal oxide nanoparticles (MONPs) namely ZnO, TiO2, and SiO2 onto fabric surface using citric acid/Sodium hypophosphite for ester-crosslinking and creating new anchoring and binding sites, COOH groups, onto the ester-crosslinked fabrics surface. The surface morphology and the presence of active ingredients (Cs & MONPs) onto selected - coated fabric samples were analyzed by SEM images and confirmed by EDS spectrums. The influence of various finishing formulations on some performance and functional properties such as wettability, antibacterial activity, UV-protection, self-cleaning, resiliency and durability to wash were studied. The obtained results revealed that the extent of improvement in the imparted functional properties is governed by type of loaded-hybrid and follows the decreasing order: Cs-TiO2NPs>Cs-ZnONPs>SiO2NPs>Cs alone, as well as kind of substrate cotton/polyester (65/35)>cotton/polyester (50/50). Moreover, after 15 washing cycles, the durability of the imparted functional properties of Cs/TiO2NPs - loaded substrates marginally decreased indicating the strong fixation of the hybrid components onto the ester-crosslinked substrates. The obtained bioactive multifunctional textiles can be used for producing eco-friendly protective textile materials for numerous applications.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Fibra de Algodão , Metais/química , Nanoestruturas/química , Óxidos/química , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa