Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2200845119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759673

RESUMO

Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.


Assuntos
Ativação do Canal Iônico , Nanopartículas , Nanoporos , Lipossomos , Fosfatidilcolinas/química
2.
Methods Mol Biol ; 2186: 77-94, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32918731

RESUMO

Nanopore sensing is a powerful lab-on-a-chip technique that allows for the analysis of biomarkers present in small sample sizes. In general, nanopore clogging and low detection accuracy arise when the sample becomes more and more complex such as in blood or lysate. To address this, we developed an OmpG nanopore that distinguishes among not only different proteins in a mixture but also protein homologs. Here, we describe this OmpG-based nanopore system that specifically analyzes targets biomarkers in complex mixtures.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biomarcadores/análise , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Nanoporos , Porinas/metabolismo , Proteínas/análise , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Porinas/química , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa