Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2207402119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322752

RESUMO

The intracellular metabolism of organelles, like lysosomes and mitochondria, is highly coordinated spatiotemporally and functionally. The activities of lysosomal enzymes significantly rely on the cytoplasmic temperature, and heat is constantly released by mitochondria as the byproduct of adenosine triphosphate (ATP) generation during active metabolism. Here, we developed temperature-sensitive LysoDots and MitoDots to monitor the in situ thermal dynamics of lysosomes and mitochondria. The design is based on upconversion nanoparticles (UCNPs) with high-density surface modifications to achieve the exceptionally high sensitivity of 2.7% K-1 and low uncertainty of 0.8 K for nanothermometry to be used in living cells. We show the measurement is independent of the ion concentrations and pH values. With Ca2+ ion shock, the temperatures of both lysosomes and mitochondria increased by ∼2 to 4 °C. Intriguingly, with chloroquine (CQ) treatment, the lysosomal temperature was observed to decrease by up to ∼3 °C, while mitochondria remained relatively stable. Lastly, with oxidative phosphorylation inhibitor treatment, we observed an ∼3 to 7 °C temperature increase and a thermal transition from mitochondria to lysosomes. These observations indicate different metabolic pathways and thermal transitions between lysosomes and mitochondria inside HeLa cells. The nanothermometry probes provide a powerful tool for multimodality functional imaging of subcellular organelles and interactions with high spatial, temporal, and thermal dynamics resolutions.


Assuntos
Lisossomos , Nanopartículas , Humanos , Temperatura , Células HeLa , Lisossomos/metabolismo , Organelas/metabolismo , Mitocôndrias/metabolismo
2.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602906

RESUMO

Temperature regulates nonradiative processes in luminescent materials, fundamental to luminescence nanothermometry. However, elevated temperatures often suppress the radiative process, limiting the sensitivity of thermometers. Here, we introduce an approach to populating the excited state of lanthanides at elevated temperatures, resulting in a sizable lifetime lengthening and intensity increase of the near-infrared (NIR)-II emission. The key is to create a five-energy-level system and use a pair of lanthanides to leverage the cross-relaxation process. We observed the lifetime of NIR-II emission of Er3+ has been remarkably increased from 3.85 to 7.54 ms by codoping only 0.5 mol % Ce3+ at 20 °C and further increased to 7.80 ms when increasing the temperature to 40 °C. Moreover, this concept is universal across four ion pairs and remains stable within aqueous nanoparticles. Our findings emphasize the need to design energy transfer systems that overcome the constraint of thermal quenching, enabling efficient imaging and sensing.

3.
Nano Lett ; 22(17): 7042-7048, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833965

RESUMO

Thermal activation of upconversion luminescence in nanocrystals opens up new opportunities in biotechnology and nanophotonics. However, it remains a daunting challenge to achieve a smart control of luminescence behavior in the thermal field with remarkable enhancement and ultrahigh sensitivity. Moreover, the physical picture involved is also debatable. Here we report a novel mechanistic design to realize an ultrasensitive thermally activated upconversion in an erbium sublattice core-shell nanostructure. By enabling a thermosensitive property into the intermediate 4I11/2 level of Er3+ through an energy-migration-mediated surface interaction, the upconverted luminescence was markedly enhanced in the thermal field together with a striking thermochromic feature under 1530 nm irradiation. Importantly, the use of non thermally coupled red and green emissions contributes to the thermal sensitivity up to 5.27% K-1, 3 times higher than that obtained by using conventional thermally coupled green emissions. We further demonstrate that the controllable surface interaction is a general approach to the thermal enhancement of upconversion for a series of lanthanide-based nanomaterials. Our findings pave a new way for the development of smart luminescent materials toward emerging applications such as noncontact nanothermometry, information security, and anticounterfeiting.

4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069275

RESUMO

Temperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments. A comparative analysis is conducted of the results obtained using these methods for the cytosol, nucleus, endo-/sarcoplasmic reticulum, and mitochondria, as well as their biological consistency. Special attention is given to the limitations, possible sources of errors and ambiguities of the sensor's responses. The issue of biological temperature limits in cells and organelles is considered. It is concluded that the elaboration of experimental protocols for ultralocal temperature measurements that take into account both the characteristics of biological systems, as well as the properties and limitations of each type of sensor is of critical importance for the generation of reliable results and further progress in this field.


Assuntos
Mitocôndrias , Termometria , Mitocôndrias/metabolismo , Termometria/métodos , Organelas/metabolismo , Temperatura , Citosol/metabolismo , Temperatura Alta
5.
Small ; 18(34): e2202452, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35908155

RESUMO

Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4 :Er3+ ,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20-45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity- a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometry.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Luminescência , Polímeros
6.
Small ; 18(31): e2201602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789234

RESUMO

Biofunctionalized nanoparticles are increasingly used in biomedical applications including sensing, targeted delivery, and hyperthermia. However, laser excitation and associated heating of the nanomaterials may alter the structure and interactions of the conjugated biomolecules. Currently no method exists that directly monitors the local temperature near the material's interface where the conjugated biomolecules are. Here, a nanothermometer is reported based on DNA-mediated points accumulation for imaging nanoscale topography (DNA-PAINT) microscopy. The temperature dependent kinetics of repeated and reversible DNA interactions provide a direct readout of the local interfacial temperature. The accuracy and precision of the method is demonstrated by measuring the interfacial temperature of many individual gold nanoparticles in parallel, with a precision of 1 K. In agreement with numerical models, large particle-to-particle differences in the interfacial temperature are found due to underlying differences in optical and thermal properties. In addition, the reversible DNA interactions enable the tracking of interfacial temperature in real-time with intervals of a few minutes. This method does not require prior knowledge of the optical and thermal properties of the sample, and therefore opens the window to understanding and controlling interfacial heating in a wide range of nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia , Nanoestruturas/química
7.
Nano Lett ; 21(4): 1651-1658, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33550807

RESUMO

Temperature dynamics reflect the physiological conditions of cells and organisms. Mitochondria regulate the temperature dynamics in living cells as they oxidize the respiratory substrates and synthesize ATP, with heat being released as a byproduct of active metabolism. Here, we report an upconversion nanoparticle-based thermometer that allows the in situ thermal dynamics monitoring of mitochondria in living cells. We demonstrate that the upconversion nanothermometers can efficiently target mitochondria, and the temperature-responsive feature is independent of probe concentration and medium conditions. The relative sensing sensitivity of 3.2% K-1 in HeLa cells allows us to measure the mitochondrial temperature difference through the stimulations of high glucose, lipid, Ca2+ shock, and the inhibitor of oxidative phosphorylation. Moreover, cells display distinct response time and thermodynamic profiles under different stimulations, which highlight the potential applications of this thermometer to study in situ vital processes related to mitochondrial metabolism pathways and interactions between organelles.


Assuntos
Nanopartículas , Células HeLa , Humanos , Termômetros
8.
Nano Lett ; 21(1): 769-777, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33382624

RESUMO

Nanoparticle-mediated thermal treatments have demonstrated high efficacy and versatility as a local anticancer strategy beyond traditional global hyperthermia. Nanoparticles act as heating generators that can trigger therapeutic responses at both the cell and tissue level. In some cases, treatment happens in the absence of a global temperature rise, damaging the tumor cells even more selectively than other nanotherapeutic strategies. The precise determination of the local temperature in the vicinity of such nanoheaters then stands at the heart of thermal approaches to better adjust the therapeutic thermal onset and reduce potential toxicity-related aspects. Herein, we describe an experimental procedure by X-ray absorption spectroscopy, which directly and accurately infers the local temperature of gold-based nanoparticles, single and hybrid nanocrystals, upon laser photoexcitation, revealing significant nanothermal gradients. Such nanothermometric methodology based on the temperature-dependency of atomic parameters of nanoparticles can be extended to any nanosystem upon remote hyperthermal conditions.


Assuntos
Hipertermia Induzida , Nanopartículas , Ouro , Lasers , Temperatura , Espectroscopia por Absorção de Raios X
9.
Nano Lett ; 21(17): 7213-7220, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410726

RESUMO

The contactless heating capacity of magnetic nanoparticles (MNPs) has been exploited in fields such as hyperthermia cancer therapy, catalysis, and enzymatic thermal regulation. Herein, we propose an advanced technology to generate multiple local temperatures in a single-pot reactor by exploiting the unique nanoheating features of iron oxide MNPs exposed to alternating magnetic fields (AMFs). The heating power of the MNPs depends on their magnetic features but also on the intensity and frequency conditions of the AMF. Using a mixture of diluted colloids of MNPs we were able to generate a multi-hot-spot reactor in which each population of MNPs can be selectively activated by adjusting the AMF conditions. The maximum temperature reached at the surface of each MNP was registered using independent fluorescent thermometers that mimic the molecular link between enzymes and MNPs. This technology paves the path for the implementation of a selective regulation of multienzymatic reactions.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo
10.
Angew Chem Int Ed Engl ; 60(51): 26725-26733, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34623016

RESUMO

Triplet-triplet annihilation (TTA) upconversion is a special non-linear photophysical process that converts low-energy photons into high-energy photons based on sensitizer/annihilator pairs. Here, we constructed a novel luminescence ratiometric nanothermometer based on TTA upconversion nanomicelles by encapsulating sensitizer/annihilator molecules into a temperature-sensitive amphiphilic triblock polymer and obtained good linear relationships between the luminescence ratio (integrated intensity ratio of upconverted luminescence peak to the downshifted phosphorescence peak) and the temperature. We also found chemical modification of annihilators would rule out the interference of the polymer concentration and stereochemical engineering of annihilators would readily regulate the thermal sensitivity.

11.
Small ; 16(48): e2004118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33155363

RESUMO

Luminescence nanothermometry is promising for noninvasive probing of temperature in biological microenvironment at nanometric spatial resolution. Yet, wavelength- and temperature-dependent absorption and scattering of tissues distort measured spectral profile, rendering conventional luminescence nanothermometers (ratiometric, intensity, band shape, or spectral shift) problematic for in vivo temperature determination. Here, a class of lanthanide-based nanothermometers, which are able to provide precise and reliable temperature readouts at varied tissue depths through NIR-II luminescence lifetime, are described. To achieve this, an inert core/active shell/inert shell structure of tiny nanoparticles (size, 13.5 nm) is devised, in which thermosensitive lanthanide pairs (ytterbium and neodymium) are spatially confined in the thin middle shell (sodium yttrium fluoride, 1 nm), ensuring being homogenously close to the surrounding environment while protected by the outmost calcium fluoride shell (CaF2 , ≈2.5 nm) that shields out bioactive milieu interferences. This ternary structure enables the nanothermometers to consistently resolve temperature changes at depths of up to 4 mm in biological tissues, having a high relative temperature sensitivity of 1.4-1.1% °C-1 in the physiological temperature range of 10-64 °C. These lifetime-based thermosensitive nanoprobes allow for in vivo diagnosis of murine inflammation, mapping out the precise temperature distribution profile of nanoprobes-interrogated area.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Animais , Luminescência , Camundongos , Neodímio , Itérbio
12.
Small ; 16(28): e2000804, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468691

RESUMO

Colloidal quantum dots (QDs) are a fascinating class of semiconducting nanocrystals, thanks to their optical properties tunable through size and composition, and simple synthesis methods. Recently, colloidal double-emission QDs have been successfully applied as competitive optical temperature sensors, since they exhibit structure-tunable double emission, temperature-dependent photoluminescence, high quantum yield, and excellent photostability. Until now, QDs have been used as nanothermometers for in vivo biological thermal imaging, and thermal mapping in complex environments at the sub-microscale to nanoscale range. In this Review, recent progress for QD-based nanothermometers is highlighted and perspectives for future work are described.

13.
Chemistry ; 26(61): 13792-13796, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32663350

RESUMO

Nanothermometry is the study of temperature at the submicron scale with a broad range of potential applications, such as cellular studies or electronics. Molecular luminescent-based nanothermometers offer a non-contact means to record these temperatures with high spatial resolution and thermal sensitivity. A luminescent-based molecular thermometer comprised of visible-emitting Ga3+ /Tb3+ and Ga3+ /Sm3+ metallacrowns (MCs) achieved remarkable relative thermal sensitivity associated with very low temperature uncertainty of Sr =1.9 % K-1 and δT<0.045 K, respectively, at 328 K, as an aqueous suspension of polystyrene nanobeads loaded with the corresponding MCs. To date, they are the ratiometric molecular nanothermometers offering the highest level of sensitivity in the physiologically relevant temperature range.


Assuntos
Gálio , Compostos Organometálicos , Samário , Térbio , Gálio/química , Luminescência , Compostos Organometálicos/química , Samário/química , Temperatura , Térbio/química , Termômetros , Termometria/métodos
14.
Nano Lett ; 19(3): 1867-1874, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30789274

RESUMO

Plasmonic hot carriers have been recently identified as key elements for photocatalysis at visible wavelengths. The possibility to transfer energy between metal plasmonic nanoparticles and nearby molecules depends not only on carrier generation and collection efficiencies but also on their energy at the metal-molecule interface. Here an energy screening study was performed by monitoring the aniline electro-polymerization reaction via an illuminated 80 nm gold nanoparticle. Our results show that plasmon excitation reduces the energy required to start the polymerization reaction as much as 0.24 eV. Three possible photocatalytic mechanisms were explored: the enhanced near field of the illuminated particle, the temperature increase at the metal-liquid interface, and the excited electron-hole pairs. This last phenomenon is found to be the one contributing most prominently to the observed energy reduction.

15.
Nano Lett ; 18(7): 4220-4225, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29879352

RESUMO

Probing spatial variation of temperature at the nanoscale provides key information for exploring diverse areas of modern science and technology. Despite significant progress in the development of contact thermometers with high spatial resolution, one inherent disadvantage is that the quantitative analysis of temperature can be complicated by the direct thermal contact. On the other hand, noncontact infrared radiation thermometer is free from such contact-induced disturbance, but suffers from insufficient spatial resolution stemming from diffraction-limit in the micrometer range. Combining a home-built sensitive infrared microscope with a noncontact scattering probe, we detected fluctuating electromagnetic evanescent fields on locally heated material surface, and thereby mapped temperature distribution in subwavelength scales. We visualize nanoscale Joule heating on current-carrying metal wires and find localized "hot-spots" developing along sharp corners of bended wires in the temperature mapping. Simulation calculations give quantitative account of the nanoscale temperature distribution, definitely indicating that the observed effect is caused by the nonuniform energy dissipation due to the current-crowding effect. The equipment in this work is a near-field version of infrared radiation thermometer with a spatial resolution far below the detection wavelength (<100 nm, or λ/140) in which local temperature distribution of operating nanoscale devices can be noninvasively mapped with a temperature resolution ∼2 K at room-temperature.

16.
Nano Lett ; 18(5): 3066-3075, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29694788

RESUMO

Nanowires are a versatile platform to investigate and harness phonon and thermal transport phenomena in nanoscale systems. With this perspective, we demonstrate herein the use of crystal phase and mass disorder as effective degrees of freedom to manipulate the behavior of phonons and control the flow of local heat in silicon nanowires. The investigated nanowires consist of isotopically pure and isotopically mixed nanowires bearing either a pure diamond cubic or a cubic-rhombohedral polytypic crystal phase. The nanowires with tailor-made isotopic compositions were grown using isotopically enriched silane precursors 28SiH4, 29SiH4, and 30SiH4 with purities better than 99.9%. The analysis of polytypic nanowires revealed ordered and modulated inclusions of lamellar rhombohedral silicon phases toward the center in otherwise diamond-cubic lattice with negligible interphase biaxial strain. Raman nanothermometry was employed to investigate the rate at which the local temperature of single suspended nanowires evolves in response to locally generated heat. Our analysis shows that the lattice thermal conductivity in nanowires can be tuned over a broad range by combining the effects of isotope disorder and the nature and degree of polytypism on phonon scattering. We found that the thermal conductivity can be reduced by up to ∼40% relative to that of isotopically pure nanowires, with the lowest value being recorded for the rhombohedral phase in isotopically mixed 28Si x30Si1- x nanowires with composition close to the highest mass disorder ( x ∼ 0.5). These results shed new light on the fundamentals of nanoscale thermal transport and lay the groundwork to design innovative phononic devices.

17.
Small ; 14(24): e1800868, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29761629

RESUMO

A crucial challenge in nanotherapies is achieving accurate and real-time control of the therapeutic action, which is particularly relevant in local thermal therapies to minimize healthy tissue damage and necrotic cell deaths. Here, a nanoheater/thermometry concept is presented based on magnetoplasmonic (Co/Au or Fe/Au) nanodomes that merge exceptionally efficient plasmonic heating and simultaneous highly sensitive detection of the temperature variations. The temperature detection is based on precise optical monitoring of the magnetic-induced rotation of the nanodomes in solution. It is shown that the phase lag between the optical signal and the driving magnetic field can be used to detect viscosity variations around the nanodomes with unprecedented accuracy (detection limit 0.0016 mPa s, i.e., 60-fold smaller than state-of-the-art plasmonic nanorheometers). This feature is exploited to monitor the viscosity reduction induced by optical heating in real-time, even in highly inhomogeneous cell dispersions. The magnetochromic nanoheater/thermometers show higher optical stability, much higher heating efficiency and similar temperature detection limits (0.05 °C) compared to state-of-the art luminescent nanothermometers. The technological interest is also boosted by the simpler and lower cost temperature detection system, and the cost effectiveness and scalability of the nanofabrication process, thereby highlighting the biomedical potential of this nanotechnology.

18.
Luminescence ; 33(7): 1262-1267, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30338620

RESUMO

The effects of Tm3+ concentration on upconversion emission and temperature-sensing behavior of Tm3+/Yb3+:Y2O3 nanocrystals were investigated. Blue and red emissions were observed under 980 nm excitation. Both upconversion emissions and the blue to red intensity ratio were found to decrease with increasing Tm3+ concentration. The temperature-sensing performances of the samples were studied, the fluorescence intensity ratio of 1G4(a)→3H6 (477 nm) and 1G4(b)→3H6 (490 nm) transitions from Tm3+ ions was chosen as the thermometric index. The results showed that the sensor sensitivity was sensitive to Tm3+ ion concentration. The maximum sensitivity of ~32 × 10-4 K-1 was obtained for 0.1%Tm3+/5%Yb3+:Y2O3 nanocrystals at 344 K. Moreover, a marked optical induced heating effect was also found in the nanocrystals. The prepared Tm3+/Yb3+:Y2O3 nanocrystals could be used in temperature-sensing probes and in optical heaters.


Assuntos
Nanopartículas/química , Óxidos/química , Temperatura , Túlio/análise , Itérbio/química , Ítrio/química , Luminescência , Tamanho da Partícula , Propriedades de Superfície
19.
Nano Lett ; 17(5): 2945-2952, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28409632

RESUMO

We propose a novel photothermal approach based on resonant dielectric nanoparticles, which possess imaginary part of permittivity significantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more effectively than similar spherical gold nanoparticle at the same heating conditions. We observe photoinduced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (<2 mW/µm2) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, that is, up to the melting point of silicon (1690 K) with submicrometer spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel nonplasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.

20.
Small ; 13(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27699975

RESUMO

An optical nanothermometer technique based on laser trapping, moving and targeted attaching an erbium oxide nanoparticle cluster is developed to measure the local temperature. The authors apply this new nanoscale temperature measuring technique (limited by the size of the nanoparticles) to measure the temperature of vapor nucleation in water. Vapor nucleation is observed after superheating water above the boiling point for degassed and nondegassed water. The average nucleation temperature for water without gas is 560 K but this temperature is lowered by 100 K when gas is introduced into the water. The authors are able to measure the temperature inside the bubble during bubble formation and find that the temperature inside the bubble spikes to over 1000 K because the heat source (optically-heated nanorods) is no longer connected to liquid water and heat dissipation is greatly reduced.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa