Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525731

RESUMO

In the current context of green mobility and sustainability, the use of new generation natural fillers, namely, α-cellulose, has gained significant recognition. The presence of hydroxyl groups on α-cellulose has generated immense eagerness to map its potency as filler in an elastomeric composite. In the present work, α-cellulose-emulsion-grade styrene butadiene rubber (E-SBR) composite is prepared by conventional rubber processing method by using variable proportions of α-cellulose (1 to 40 phr) to assess its reinforce ability. Rheological, physical, visco-elastic and dynamic-mechanical behavior have clearly established that 10 phr loading of α-cellulose can be considered as an optimized dosage in terms of performance parameters. Morphological characterization with the aid of scanning electron microscope (SEM) and transmission electron microscopy (TEM) also substantiated that composite with 10 phr loading of α-cellulose has achieved the morphological threshold. With this background, synthetic filler (silica) is substituted by green filler (α-cellulose) in an E-SBR-based composite. Characterization of the compound has clearly established the reinforcement ability of α-cellulose.


Assuntos
Butadienos/química , Celulose/química , Elastômeros/química , Estirenos/química , Resinas Compostas/química , Emulsões/química , Dióxido de Silício/química
2.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731554

RESUMO

The use of biopolyesters, as polymeric matrices, and natural fillers derived from wastes or by-products of food production to achieve biocomposites is nowadays a reality. The present paper aims to valorize mussel shells, 95% made of calcium carbonate (CaCO3), converting them into high-value added products. The objective of this work was to verify if CaCO3, obtained from Mediterranean Sea mussel shells, can be used as filler for a compostable matrix made of Polylactic acid (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT). Thermal, mechanical, morphological and physical properties of these biocomposites were evaluated, and the micromechanical mechanism controlling stiffness and strength was investigated by analytical predictive models. The performances of these biocomposites were comparable with those of biocomposites produced with standard calcium carbonate. Thus, the present study has proved that the utilization of a waste, such as mussel shell, can become a resource for biocomposites production, and can be an effective option for further industrial scale-up.


Assuntos
Exoesqueleto/química , Bivalves/química , Poliésteres/química , Animais , Pós
3.
Bioresour Bioprocess ; 11(1): 57, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836876

RESUMO

The canola oil industry generates significant waste as canola meal (CM) which has limited scope and applications. This study demonstrates the possibility of valorization of CM as a sustainable natural filler in a biodegradable polymer composite of Poly(lactic acid) (PLA). Generally, interfacial bonding between natural fibers and the polymer matrix in the composite is weak and non-uniform. One possible solution is to derivatize natural fibre to introduce interfacial bond strength and compatibility with the PLA polymer matrix. Here, CM was succinylated in a reactive extrusion process using succinic anhydride at 30 wt% to get 14% derivatization with 0.02 g of -COOH density per g of CM. The CM or succinylated CM at 5 and 15 wt% was co-extruded with amorphous PLA to get composite fibers. CM-PLA and succinylated CM-PLA biocomposites were foamed using a mild and green microcellular foaming process, with CO2 as an impregnating agent without any addition of organic solvents. The properties of the foams were analyzed using differential scanning calorimetry (DSC), Dynamic mechanical thermal analysis (DMTA), shrinkage, and imaging. The addition of CM or succinylated CM as a natural filler did not significantly change the glass transition temperature, melting point, percent crystallization, stiffness, and thermal stability of PLA foams. This suggests succinylation (modification) of CM is not a mandatory step for improving interphase compatibility with the amorphous PLA. The new PLA-CM foams can be a good alternative in the packaging industry replacing the existing petroleum-based polymer foams.

4.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124503

RESUMO

In this work, the authors investigated the impact of extrusion-based printing process on the structural characteristics of bio-based resins through rheological measurements. Two commercially available filaments made from unfilled and wood-filled polylactide (PLA) polymers were considered. Three-dimensional specimens were prepared by printing these filaments under various operating conditions, i.e., changing the extruder temperature and printing rate, and examined using time sweep tests. Specific cycle rheological testing was conducted on pelletized filaments to simulate temperature changes in the printing process. The rheological characteristics of unprocessed materials, in terms of storage (G') and loss (G″) moduli, were found to be slightly affected by temperature changes. For a pure polymer, the G' slope at a low frequency decreased over time, showing that the polymer chains evolved from a higher to a lower molecular weight. For wood-filled materials, the G' slope rose over the testing time, emphasizing the formation of a percolated network of structured filler within the matrix. On the other side, the rheological parameters of both materials were strongly impacted by the printing extrusion and the related conditions. At lower nozzle temperatures (200 °C), by decreasing the printing speed, the G' and G″ curves became increasingly different with respect to unprocessed resin; whereas at higher nozzle temperatures (220 °C), the influence of the printing speed was insignificant, and all curves (albeit distant from those of unprocessed matrix) mainly overlapped. Considerations on degradation kinetics of both materials during the printing process were also provided by fitting experimental data of complex viscosity with linear correlation over time.

5.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987323

RESUMO

The development of waterborne polyurethane (WPU) has been stimulated as an alternative to solvent-based polyurethanes due to low-VOC alternatives and reduced exposure to solvents. However, their relatively low mechanical performance and degradation have presented challenges in their wide application. Here, we developed environmentally-friendly bio polyol-based WPU nanocomposite dispersions and films, and presented the optimal process conditions for their manufacture. Additionally, the condition was established without using harmful catalysts or ethyl methyl ketone (MEK) during the polymerization. Moreover, regenerated cellulose nanoparticles (RCNs) were employed as natural chain-extenders in order to improve the biodegradability and mechanical performances of the nanocomposite films. The RCNs have a lower crystallinity compared to cellulose nanocrystals (CNCs), allowing them to possess high toughness without interfering with the elastomeric properties of polyurethane. The prepared CWPU/RCNs nanocomposite films exhibited high toughness of 58.8 ± 3 kgf∙mm and elongation at break of 240 ± 20%. In addition, depending on the molar ratio of NCO/OH, the polyurethane particle size is variously controlled from 70 to 230 nm, enabling to fabricate their dispersions with various transmittances. We believe that our findings not only open a meaningful path toward green elastomers with biodegradability but provides the design concept for bio-elastomers in order to develop industrial elastomers with mechanical and thermal properties.

6.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679275

RESUMO

The aim of this research was to evaluate the effect of untreated and 5% aqueous NaOH solution-treated filler of the plant Jatropha Curcas L. on the mechanical properties of adhesive bonds, especially in terms of their service life at different amplitudes of cyclic loading. As a result of the presence of phorbol ester, which is toxic, Jatropha oilseed cake cannot be used as livestock feed. The secondary aim was to find other possibilities for the utilization of natural waste materials. Another use is as a filler in polymer composites, that is, in composite adhesive layers. The cyclic loading of the adhesive bonds was carried out for 1000 cycles in two amplitudes, that is, 5-30% of the maximum force and 5-50% of the maximum force, which was obtained by the static tensile testing of the adhesive bonds with unmodified filler. The static tensile test showed an increase in the shear strength of the adhesive bonds with alkali-treated filler compared to the untreated filler by 3-41%. The cyclic test results did not show a statistically significant effect of the alkaline treatment of the filler surface on the service life of the adhesive bonds. Positive changes in the strain value between adhesive bonds with treated and untreated filler were demonstrated at cyclic stress amplitudes of 5-50%. SEM analysis showed the presence of interlayer defects in the layers of the tested materials, which are related to the oil-based filler used.

7.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770188

RESUMO

Currently composites play an important role in all aspects of engineering and technology, with constantly growing applications. Recently, more attention was focused on natural fillers due to their suitability as reinforcement materials in thermo-plastic matrices which improve the mechanical properties of these polymers. Biofillers are used due to their low cost, high strength rigidity, non-toxicity, biodegradability, and availability. Currently, spent coffee grounds (SCG) are attracting more attention as a natural filler since high amounts of SCG are generated every day (food waste of coffee processing). This study allowed us to determine the long-term effect of activated sludge microorganisms with known technical and technological parameters on the mechanical properties of composites with spent coffee grounds filler. The fittings consisted of high-density poly-ethylene (PE-HD), which was used as the matrix, and a filler based on spent coffee grounds (SCG), which was used as a modifier. It was established that the composition of the composite and its residence time in the bioreactor directly influenced the contact angle value. The shift of the contact angle value is associated with the formation of the biofilm on the tested materials. An increase in the contact angle was observed in the case of all samples tested in the bioreactor, with the lowest values equal to approx. 76.4° for sample A (PE-HD) and higher values of approx. 90° for the remaining composite samples with a coffee grounds filler. The research confirmed that the increased ratio of coffee grounds in the composite results in the increased diversity and abundance of microorganisms. The highest number and the greatest diversity of microorganisms were observed in the case of the composite with 40% coffee grounds after more than a year of exposure in the bioreactor, while the composite with 30% SCG was second. Ciliates (Ciliata), especially the sessile forms belonging to the Epistylis genus, were the most common and the most numerous group of microorganisms in the activated sludge and in the biofilm observed on the samples after immersion in the bioreactor. The conducted research confirms that the use of polymer composite mouldings with a filler in the form of spent coffee grounds as a carrier allows the efficient increase in the population of microorganisms in the bioreactor.

8.
Polymers (Basel) ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112122

RESUMO

The smoke emitted during thermal decomposition of elastomeric composites contains a significant number of carcinogenic and mutagenic compounds from the group of polycyclic aromatic hydrocarbons, PAHs, as well as polychlorinated dibenzo-p-dioxins and furans, PCDDs/Fs. By replacing carbon black with a specific amount of lignocellulose filler, we noticeably reduced the fire hazard caused by elastomeric composites. The lignocellulose filler reduced the parameters associated with the flammability of the tested composites, decreased the smoke emission, and limited the toxicity of gaseous decomposition products expressed as a toximetric indicator and the sum of PAHs and PCDDs/Fs. The natural filler also reduced emission of gases that constitute the basis for determination of the value of the toximetric indicator WLC50SM. The flammability and optical density of the smoke were determined in accordance with the applicable European standards, with the use of a cone calorimeter and a chamber for smoke optical density tests. PCDD/F and PAH were determined using the GCMS-MS technique. The toximetric indicator was determined using the FB-FTIR method (fluidised bed reactor and the infrared spectrum analysis).

9.
Materials (Basel) ; 16(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959440

RESUMO

This paper presents the results of a study investigating the biodegradation of poly(butylene succinate) (PBS)/wheat bran (WB) biocomposites. Injection mouldings were subjected to biodegradation in compost-filled bioreactors under controlled humidity and temperature conditions. The effects of composting time (14, 42 and 70 days) and WB mass content (10%, 30% and 50% wt.) on the structural and thermal properties of the samples were investigated. Measurements were made by infrared spectral analysis, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. Results demonstrated that both the thermal and structural properties of the samples depended greatly on the biodegradation time. Specifically, their crystallinity degree increased significantly while molecular mass sharply decreased with biodegradation time, whereas their thermal resistance only showed a slight increase. This resulted from enzymatic hydrolysis that led to the breakdown of ester bonds in polymer chains. It was also found that a higher WB content led to a higher mass loss in the biocomposite samples during biodegradation and affected their post-biodegradation properties. A higher bran content increased the degree of crystallinity of the biocomposite samples but reduced their thermal resistance and molecular mass.

10.
Materials (Basel) ; 15(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079485

RESUMO

In this study, the influence of carbonate lake sediments (Polylactide/Carbonate Lake Sediments-PLA/CLS) on the mechanical and structural properties of polylactide matrix composites was investigated. Two fractions of sediments originating from 3-8 and 8-12 m were analysed for differences in particle size by distribution (Dynamic Light Scattering-DLS), phase composition (X-ray Diffraction-XRD), the presence of surface functional groups (Fourier Transform-Infrared-FT-IR), and thermal stability (Thermogravimetric Analysis-TGA). Microscopic observations of the composite fractures were also performed. The effect of the precipitate fraction on the mechanical properties of the composites before and after conditioning in the weathering chamber was verified through peel strength, flexural strength, and impact strength tests. A melt flow rate study was performed to evaluate the effect of sediment on the processing properties of the PLA/CLS composite. Hydrophobic-hydrophilic properties were also investigated, and fracture analysis was performed by optical and electron microscopy. The addition of carbon lake sediments to PLA allows for the obtention of composites resistant to environmental factors such as elevated temperature or humidity. Moreover, PLA/CLS composites show a higher flow rate and higher surface hydrophobicity in comparison with unmodified PLA.

11.
Materials (Basel) ; 15(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556765

RESUMO

The article presents the results of flammability tests on polymer compositions with wheat bran (WB) as the applied filler, and polyethylene (PE) or poly(butylene succinate) (PBS) as the matrix material. Tests were conducted using samples of compositions containing 10, 30 and 50%wt wheat bran. The test samples were manufactured by injection moulding from compositions previously produced by extrusion pelleting. For comparative purposes, samples made only of the plastics used for the composition matrix were also examined. Flammability tests were carried out in accordance with the recommendations of EN 60695-11-10 Part 11-10 with horizontal and vertical positioning of the sample, using a universal flammability-test-stand. During the flammability tests, changes in the temperature field in the area of the burning sample were also recorded, using a thermal imaging camera. Sample residues after flammability tests were also examined with infrared spectroscopy (FTIR) to assess their thermal destruction. The results of the study showed a significant increase in flammability with bran content for both PE and PBS matrix compositions. Clear differences were also found in the combustion behaviour of the matrix materials alone. Both the burning rate and maximum flame temperature were lower in favour of PBS. PBS compositions with wheat bran also showed lower flammability, compared with their PE matrix counterparts.

12.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335529

RESUMO

The addition of natural scraps to biodegradable polymers has gained particular interest in recent years, allowing reducing environmental pollution related to traditional plastic. In this work, new composites were fabricated by adding 10% or 20% of Hedysarum coronarium (HC) flour to Poly (lactic acid) (PLA). The two formulations were first produced by twin screw extrusion and the obtained filaments were then employed for the fabrication of composites, either for compression molding (CM) or by fused deposition modeling (FDM), and characterized from a morphological and mechanical point of view. Through FDM it was possible to achieve dense structures with good wettability of the filler that, on the contrary, cannot be obtained by CM. The results indicate that the filler effectively acts as reinforcement, especially for FDM composites. The most remarkable enhancement was found in the flexural properties (+100% of modulus and ultimate strength), followed by tensile resistance and stiffness (+60%) and impact strength (+50%), whereas a moderate loss in tensile deformability was observed, especially at the highest loading. By adding HC to the polymeric matrix, it was possible to obtain a green, high-performance, and cost-effective composite, which could find applications for the fabrication of panels for furniture or the automotive industry.

13.
Polymers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267858

RESUMO

The research is focused on the evaluation of mechanical properties of adhesive bonds with a composite layer of adhesive to increase their service life (safety) under cyclic loading of different intensities. Cyclic loading represents a frequent cause of adhesive bond failure and, thus, a reduction in their service life. Waste from the production of coconut oil, that is, coconut shells in the form of particles, was used as a filler. Coconut shells are in most cases incinerated or otherwise uselessly incinerated, but they can also be used as a natural filler. Cyclic loading (quasi-static tests) was performed for 1000 cycles in two intensities, that is, 5-30% (157-940 N) of maximum force and 5-50% (157-1567 N) of maximum force. The results of the experiment showed a positive effect of the added filler, especially at an intensity of 5-50%, when the service life of adhesive bonds with a composite adhesive layer (AB10, AB20, AB30) increased compared to adhesive bonds without added AB0 filler, which did not withstand the given intensity. A more pronounced viscoelastic behavior of adhesive bonds was demonstrated at an intensity of 5-50% between the 1st and 1000th cycle. SEM analysis showed reduced wetting of the filler and matrix and delamination due to cyclic loading.

14.
Materials (Basel) ; 15(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35057191

RESUMO

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 µm to 300 µm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts. Concerning FDM, 5% and 10% HC-filled composites proved also easily printable. Mechanical results showed filler effectively acted as reinforcement: Young's modulus and tensile strengths of the composites increased from 74.3 MPa to 236 MPa and from 18.6 MPa to 33.4 MPa, respectively, when 20% of HC was added to the pure matrix. FDM samples, moreover, showed higher mechanical properties if compared with CM ones due to rectilinear infill and fibers orientation. In fact, regarding the 10% HC composites, Young's modulus of the CM and FDM ones displayed a relative increment of 176% and 224%, respectively.

15.
Polymers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685359

RESUMO

In recent years, biodegradable composites have become important in various fields because of the increasing awareness of the global environment. Waste natural polymers have received much attention as renewable, biodegradable, non-toxic and low-cost filler in polymer composites. In order to exploit the high potential for residual natural loading in latex composites, different types of surface modification techniques have been applied. This review discusses the preparation and characterization of the modified waste natural fillers for latex-based composites. The potency of the waste natural filler for the latex-based composites was explored with a focus on the mechanical, thermal, biodegradability and filler-latex interaction. This review also offers an update on the possible application of the waste natural filler towards the biodegradability of the latex-based composites for a more sustainable future.

16.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916363

RESUMO

This article is focused on studying the effect of the reprocessing cycles on the mechanical, thermal, and aesthetic properties of a biocomposite. This process is based on starch thermoplastic polymer (TPS) filled with 20 wt% almond shell powder (ASP) and epoxidized linseed oil (ELO) as a compatibilizing additive. To do so, the biocomposite was prepared in a twin-screw extruder, molded by injection, and characterized in terms of its mechanical, thermal, and visual properties (according to CieLab) and the melt flow index (MFI). The analyses carried out were tensile, flexural, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of the reprocessing were also studied for the biodegradable unfilled TPS polymer. The results showed that TPS and TPS/ASP biocomposite suffer changes progressively on the properties studied after each reprocessing cycle. Furthermore, it was observed that the addition of ASP intensified these effects regarding TPS. However, in spite of the progressive degradation in both cases, it is technically feasible to reprocess the material at least three times without needing to incorporate virgin material.

17.
Materials (Basel) ; 14(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917343

RESUMO

We investigated the effect of the type and amount of expandable graphite (EG) and blackcurrant pomace (BCP) on the flammability, thermal stability, mechanical properties, physical, and chemical structure of viscoelastic polyurethane foams (VEF). For this purpose, the polyurethane foams containing EG, BCP, and EG with BCP were obtained. The content of EG varied in the range of 3-15 per hundred polyols (php), while the BCP content was 30 php. Based on the obtained results, it was found that the additional introduction of BCPs into EG-containing composites allows for an additive effect in improving the functional properties of viscoelastic polyurethane foams. As a result, the composite containing 30 php of BCP and 15 php of EG with the largest particle size and expanded volume shows the largest change in the studied parameters (hardness (H) = 2.65 kPa (+16.2%), limiting oxygen index (LOI) = 26% (+44.4%), and peak heat release rate (pHRR) = 15.5 kW/m2 (-87.4%)). In addition, this composite was characterized by the highest char yield (m600 = 17.9% (+44.1%)). In turn, the change in mechanical properties is related to a change in the physical and chemical structure of the foams as indicated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis.

18.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947175

RESUMO

The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10-50 wt.% and extruder screw speed of 50-200 min-1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes-disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31-0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%-0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.

19.
Ann Transl Med ; 8(6): 362, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355806

RESUMO

BACKGROUND: The search for effectiveness and safety in the use of dermal fillers, is an ongoing challenge for aesthetic physicians, plastic surgeons and the science of bioengineering. Understanding the variety of characteristics, capabilities, advantages and disadvantages of available injectables is essential to reduce complication rates and achieve satisfying aesthetic and functional results. METHODS: Algeness is a 100% natural, biodegradable tissue implant, consisting of a gel derived from agarose. This paper analyzes the use of this newly introduced agarose gel as an alternative filler in the face and neck for aesthetic and functional indications. All participants gave informed consent before taking part and there was no ethics approval required. As this work describes opinions based on clinical experienced physicians and not the results of a monocentric study. RESULTS: Algeness is competitive with other available hydrophilic biomaterials, such as hyaluronic acid, and has the advantage of its unique hydrocolloid nature. CONCLUSIONS: Compared to other injectables, it exhibits good tolerability, excellent persistence, negligible immunological reaction, biocompatibility and maximal safety-all properties combined with immediate volume restoration and predictable outcomes. "What you see (on injection), is what you get (as a result)". Level of evidence: Level V, opinions based on clinical experience.

20.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911803

RESUMO

This article is focused on the development of a series of biodegradable and eco-friendly biocomposites based on starch polymer (Mater-Bi DI01A) filled with 30 wt% almond shell (AS) of different varieties (Desmayo Rojo, Largueta, Marcona, Mollar, and a commercial mixture of varieties) to study the influence of almond variety in the properties of injected biodegradable parts. The different AS varieties are analysed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). The biocomposites are prepared in a twin-screw extruder and characterized in terms of their mechanical (tensile, flexural, Charpy impact, and hardness tests) and thermal properties (differential scanning calorimetry (DSC) and TGA). Despite observing differences in the chemical composition of the individual varieties with respect to the commercial mixture, the results obtained from the mechanical characterisation of the biocomposites do not present significant differences between the diverse varieties used. From these results, it was concluded that the most recommended option is to work with the commercial mixture of almond shell varieties, as it is easier and cheaper to acquire.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa