Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Res Rev ; 43(6): 1835-1877, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37132460

RESUMO

The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico
2.
Small ; 19(5): e2205528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446719

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA)-infected skin wounds have caused a variety of diseases and seriously endanger global public health. Therefore, multidimensional strategies are urgently to find antibacterial dressings to combat bacterial infections. Antibacterial hydrogels are considered potential wound dressing, while their clinical translation is limited due to the unpredictable risks and high costs of carrier excipients. it is found that the natural star antibacterial and anti-inflammatory phytochemicals baicalin (BA) and sanguinarine (SAN) can directly self-assemble through non-covalent bonds such as electrostatic attraction, π-π stacking, and hydrogen bonding to form carrier-free binary small molecule hydrogel. In addition, BA-SAN gel exhibited a synergistic inhibitory effect on MRSA. And its plasticity and injectability allowed it to be applied as a wound dressing. Due to the matched physicochemical properties and synergistic therapeutic effects, BA-SAN gel can inhibit bacterial virulence factors, alleviate wound inflammation, promote wound healing, and has good biocompatibility. The current study not only provided an antibacterial hydrogel with clinical value but also opened up new prospects that carrier-free hydrogels can be designed and originated from clinically used small-molecule phytochemicals.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Hidrogéis/farmacologia , Cicatrização
3.
Pharmacol Res ; 168: 105580, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781874

RESUMO

Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.


Assuntos
Ferroptose/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Ácido Mevalônico/metabolismo , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Extratos Vegetais/farmacologia
4.
Int J Cancer ; 142(4): 658-670, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28975625

RESUMO

Breast cancer (BC) prevention and therapy in the context of life-style risk factors and biological drivers is a major focus of developmental therapeutics in oncology. Obesity, alcohol, chronic estrogen signaling and smoking have distinct BC precipitating and facilitating effects that may act alone or in combination. A spectrum of signaling events including enhanced oxidative stress and changes in estrogen-receptor (ER)-dependent and -independent signaling drive the progression of BC. Breast tumors modulate ERα/ERß ratio, upregulate proliferative pathways driven by ERα and HER2 with a parallel loss and/or downregulation of tumor suppressors such as TP53 and PTEN which together impact the efficacy of therapeutic strategies and frequently lead to emergence of drug resistance. Natural phytochemicals modulate oxidative stress, leptin, integrin, HER2, MAPK, ERK, Wnt/ß-catenin and NFκB signaling along with regulating ERα and ERß, thereby presenting unique opportunities for both primary and combinatorial interventions in BC. In this regard, this article focuses on critical analyses of the evidence from multiple studies on the efficacy of natural phytochemicals in BC. In addition, areas in which the combinations of such effective natural phytochemicals with approved and/or developing anticancer agents can be translationally beneficial are discussed to derive evidence-based inference for addressing challenges in BC control and therapy.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias da Mama/prevenção & controle , Terapia de Alvo Molecular , Compostos Fitoquímicos/uso terapêutico , Pesquisa Translacional Biomédica , Neoplasias da Mama/metabolismo , Quimioterapia Combinada , Feminino , Humanos
5.
Mol Carcinog ; 57(12): 1751-1762, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30136444

RESUMO

Consumption of citrus-fruits is associated with reduced incidence of breast cancer (BC), the most common cancer diagnosed in women across the globe. In this study, we investigated the anticancer potential of 2-Hydroxyflavanone (2HF) in BC. 2HF, a citrus-bioflavonoid, has demonstrated anticancer properties in various cancers, but its anticancer role in BC has not been well studied. We investigated the in vitro and in vivo growth inhibitory effects of 2HF in an array of BC lines and in xenograft mouse models of ER-positive and HER2-positive BC cells. Compared to control, 2HF treatment reduced cell viability and suppressed migratory and invasive potential of BC cells, while, no growth inhibitory effects were observed in non-tumorigenic breast epithelial cells. Further, 2HF inhibited the expression of RLIP76, a stress-defensive and anti-apoptotic protein, which is over-expressed in BC cells and simultaneously reduced proliferation of BC cells. Nude mice bearing MCF7 or SKBR3 BC cells xenografts treated with either 2HF or targeting RLIP76 by RLIP76-antisense or RLIP76-antibody treatment had significantly lower tumor-weight as compared to corresponding controls. In addition, Western-blotting and immunohistochemical analysis of tumor tissue from control and treatment group mice showed that 2HF decreased protein expression levels of RLIP76, and the decrease was similar to those seen following RLIP76-antisense treatment. Furthermore, 2HF decreased expression of Ki67, CD31, vimentin, inhibited phosphorylation of Akt and expression of survivin and Bcl2, and increased levels of Bax, E-cadherin, and cleaved-PARP. Therefore, our results indicate that 2HF may suppress BC growth in vitro and in vivo by targeting RLIP76, and may serve as a potential adjuvant treatment in BC patients.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Flavanonas/administração & dosagem , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavanonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Chin Med ; 19(1): 72, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773596

RESUMO

L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.

7.
Discov Oncol ; 15(1): 282, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008141

RESUMO

This study on Buddleja polystachya highlights its phytochemical composition, antimicrobial activity, and cytotoxic impacts. The study emphasizes the plant's potential to treat ocular diseases by identifying important compounds involved in the bioactivity through GC-MS analysis. This study explores the antimicrobial and cytotoxic potential of Buddleja polystachya (stem and leaves) extracts, with a focus on their application in treating bacterial ocular infections and their efficacy against MCF7, HT29, and HepG2 cancer cells. Through comprehensive GC-MS analysis, a diverse array of phytochemicals was identified within Buddleja polystachya stem and leaves extracts, including carbohydrates, phenolic derivatives, fatty acids, and steroidal components. The extracts were then evaluated for their biological activities, revealing significant antimicrobial properties against a range of bacterial strains implicated in ocular infections. The research findings demonstrate that stem extracts derived from Buddleja polystachya demonstrated high to moderate cytotoxic effects on cancer cell lines MCF7, HT29, and HepG2. Notably, these effects were characterized by varying IC50 values, which suggest distinct levels of sensitivity. In contrast, leaf extracts exhibited reduced cytotoxicity when tested against all these cell lines, although they did so with a significantly higher cytotoxicity aganist HepG2 cells. The results of this investigation highlight the potential therapeutic utilization of Buddleja polystachya extracts in the management of ocular infections and cancer. These results support the need for additional research to elucidate the underlying mechanisms of action of these extracts and explore their potential as drugs.

8.
Front Vet Sci ; 10: 1134925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876000

RESUMO

The objective of this study was to evaluate the effects of dietary supplementation with flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle through a meta-analysis. Thirty-six peer-reviewed publications were included in the data set. The weighted mean differences (WMD) between the FLAs treatments and the control treatment were used to assess the effect size. Dietary supplementation with FLAs decreased feed conversion ratio (WMD = -0.340 kg/kg; p = 0.050) and increased (p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD = 15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum, FLAs supplementation decreased the serum concentration of malondialdehyde (WMD = -0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD = 12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal propionate concentration (WMD = 0.926 mol/100 mol; p = 008) was observed in response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased (p < 0.05) shear force (WMD = -1.018 kgf/cm2), malondialdehyde content (WMD = -0.080 mg/kg of meat), and yellowness (WMD = -0.460). Supplementation with FLAs decreased milk somatic cell count (WMD = -0.251 × 103 cells/mL; p < 0.001) and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content (WMD = 0.080/100 g) and milk fat content (WMD = 0.142/100 g). In conclusion, dietary supplementation with FLAs improves animal performance and nutrient digestibility in cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality of meat and milk.

9.
ACS Appl Mater Interfaces ; 15(18): 22403-22414, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104698

RESUMO

The heterogeneity of cancer cells disables the single-cell death patterns in subtypes of cells with different genotypes and phenotypes, such as refractory triple-negative breast cancer (TNBC). Therefore, the combination of multiple death modes, such as the proven cooperative apoptosis and ferroptosis, is expected to sensitize in treating TNBC. Herein, carrier-free theranostic ASP nanoparticles (NPs) were designed for wiping out TNBC by synergistic apoptosis and ferroptosis, which was self-assembled by aurantiamide acetate (Aa), scutebarbatine A (SA), and palmitin (P). Structurally, the rigid parent nucleus of SA and hydrophobic chain of P combined with the Aa to form an ordered nanostructure by noncovalent bonding forces. This self-assembly example applies to the design of nanomedicines based on more than two natural products. Notably, enhanced permeability and retention (EPR) effects and mitochondrial-lysosomal targeting empower ASP NPs to pinpoint tumor sites. Especially, Aa and P induced mitochondrial apoptosis of cancer cells, while SA and P inhibited TNBC by ferroptosis and upregulating p53. More interestingly, the combination of Aa, SA, and P enhanced the uptake of ASP NPs by cancer cell membranes. Overall, the three compounds synergize with each other to exert excellent anticancer effects.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Nanomedicina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Apoptose , Nanopartículas/química , Organelas
10.
Acta Pharm Sin B ; 10(9): 1784-1795, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33088696

RESUMO

The application of nanotechnology for antimicrobial delivery has capacity to improve antibacterial efficacy. Currently, the usage of various inorganic and organic carriers, such as metal ions, nano-silicon and surfactants, might increase the potential toxicity of nanoparticles and make their clinical transformation more difficult. Herein, a nano-delivery system was constructed by direct self-assembly of antibacterial phytochemicals (berberine and rhein) originated from traditional Chinese medicine Coptis chinensis Franch. and Rheum palmatum L., respectively. Combining X-ray single crystal diffraction, nuclear magnetic resonance and other spectra characterizations, the stacked structure of nanoparticles was profoundly demonstrated. Briefly, rhein acted as the layered backbone and berberine embedded in it. In vitro bacteriostasis experiment showed the minimum bactericidal concentration of nanoparticles was 0.1 µmol/mL, which was lower than that of berberine and rhein. The results of confocal laser scanning microscope, biofilm quantitive assay and scanning electron microscopy indicated that nanoparticles had strong inhibitory effects on Staphylococcus aureus biofilm. More importantly, transmission electron microscopy and mass spectra indicated the further bacteriostatic mechanism of nanoparticles. Meanwhile, the nanoparticles had well biocompatibility and safety. Current study will open up new prospect that the design of self-assemblies between active phytochemicals can be originated from traditional Chinese medicine combination.

11.
Eur J Pharmacol ; 887: 173535, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32910944

RESUMO

Cardiovascular disease is an important cause for morbidity and mortality worldwide. Flavonoids, such as naringin, and naringenin are important natural phytochemicals in the treatment or prevention of various disorders such as obesity, cardiac diseases, diabetes, and metabolic syndrome. Naringin and naringenin have significant therapeutic potential in several diseases through anti-oxidative, anti-inflammatory, and anti-apoptotic actions; these flavonoids play a protective role in human pathophysiology. In this review, based on the latest evidence, we present a summary of the impact of naringin, and naringenin on cardiovascular disease, and analyze and discuss the basic roles of naringin and naringenin and their mechanisms of actions in cardiovascular disease and other vascular dysfunction. The data collected in this review may serve as a comprehensive reference for the effects of naringin, and naringenin in cardiovascular disease, which may be beneficial for further research and for the design of naringin and naringenin analogs as new therapeutic options for cardiovascular diseases.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Flavanonas/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Humanos
12.
Asian Pac J Cancer Prev ; 20(5): 1309-1319, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31127882

RESUMO

Background: Colorectal cancer (CRC) is one of the major causes of morbidity and mortality. According to National Cancer Registry, the incidence of colorectal cancer in Peninsular Malaysia increases with age. The incidence is highest among Chinese population but lower among Indians and Malays. Many reviews have suggested that obesity may be associated with a higher risk (>50%) of colorectal cancer. Methods: This study collects a comprehensive data from the literature review available from respective journals on dietary intervention and the chemo-protective mechanisms of a few natural resources in obesity -associated colon cancer based on previous and current studies. Results: In obesity-associated colon cancer, the genes of interest and pathways that are mainly involved include NFκB, P13K/Akt, and MAPK pathways, and FTO, leptin, Cyclin D, MMPs, and STAT3 genes. Dietary modification is one of the alternative steps in early prevention of colon cancer. It has been proposed that the components present in certain foods may have the ability to protect against many diseases including the prevention of cancer. Conclusion: There are many factors that lead to obesity-associated colon cancer and the mechanisms behind it is still undergoing intensive research. This review aims to scrutinize research as well as reviews that have been previously reported on obesity associated colorectal cancer and the beneficial effects of including antioxidants-rich foods such as vegetables and fruits in the diet to reduce the risk of obesity associated colorectal cancer.


Assuntos
Neoplasias do Colo/prevenção & controle , Dieta , Obesidade/complicações , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/etiologia , Humanos
13.
J Microbiol ; 56(9): 683-689, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30141161

RESUMO

Human noroviruses are the causative agents of non-bacterial gastroenteritis worldwide. The rapid onset and resolution of disease symptoms suggest that innate immune responses are critical for controlling norovirus infection; however, no effective antivirals are yet available. The present study was conducted to examine the antiviral activities of Schizonepeta tenuifolia Briquet extract (STE) against noroviruses. Treatment of human norovirus replicon-bearing HG23 cells with STE at 5 and 10 mg/ml concentrations resulted in the reduction in the viral RNA levels by 77.2% and 85.9%, respectively. STE had no cytotoxic effects on HG23 cells. Treatment of RAW 264.7 cells infected with murine norovirus 1 (MNV-1), a surrogate virus of human noroviruses, with STE at 10 and 20 µg/ml concentrations resulted in the reduction of viral replication by 58.5% and 84.9%, respectively. STE treatment induced the expression of mRNAs for type I and type II interferons in HG23 cells and upregulated the transcription of interferon-ß in infected RAW 264.7 cells via increased phosphorylation of interferon regulatory factor 3, a critical transcription regulator for type I interferon production. These results suggest that STE inhibits norovirus replication through the induction of antiviral interferon production during virus replication and may serve as a candidate antiviral substance for treatment against noroviruses.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/tratamento farmacológico , Interferons/metabolismo , Lamiaceae/química , Norovirus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Infecções por Caliciviridae/virologia , Linhagem Celular/efeitos dos fármacos , Monoterpenos Cicloexânicos , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Mentol/farmacologia , Camundongos , Monoterpenos/farmacologia , Norovirus/patogenicidade , Vírus Norwalk , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Sesquiterpenos Policíclicos , Células RAW 264.7 , RNA Viral , Sesquiterpenos/farmacologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa