Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959772

RESUMO

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Assuntos
Ecossistema , Vespas , Animais , Vespas/fisiologia , Himenópteros/fisiologia , Poaceae , Abelhas/parasitologia , Tumores de Planta/parasitologia
2.
Environ Geochem Health ; 46(10): 413, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230730

RESUMO

The restoration of mining wastelands, particularly in karst regions contaminated by heavy metals, is an environmental challenge in need of urgent attention. Soil microbes play a vital role in nutrient cycling and ecosystem recovery, yet the long-term evolution of soil microbial communities in such settings remains poorly understood. This study explored the dynamics and influencing factors of soil microbial communities during 35 years of natural restoration in abandoned manganese (Mn) mine areas in Guangxi Province, China. The results revealed that the concentrations of Mn, Cd, Zn, and Cu were significantly (p < 0.05) reduced by 80.4-85.3%, 55.3-70.0%, 21.0-38.1%, and 29.4-49.4%, respectively, in the mid-late restoration periods (R19 and R35) compared with R1. The α diversities of the bacterial and fungal communities significantly increased in the middle-late restoration periods (R19 and R35), indicating increased microbial diversity as restoration progressed. The bacterial community structure exhibited more pronounced changes than did the fungal community structure, with significant shifts observed in dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteriota, and Ascomycota. Notably, the relative abundances of Rhizobiales, Burkholderiales, and Hypocreales increased gradually with succession. Co-occurrence network analysis revealed that bacterial interactions became stronger over time, whereas interactions between bacteria and fungi weakened. Mantel tests and partial least squares path modeling (PLS‒PM) identified soil pH, heavy metals (Mn, Cd, Zn, and Cu), and nutrients (SOM and TN) as key drivers shaping the microbial community composition. These factors were more strongly correlated with bacterial communities than with fungal communities, underscoring the different responses of microbial groups to environmental changes during natural restoration. These findings enhance our understanding of the ecological processes governing microbial community succession in heavy metal-contaminated soils undergoing natural restoration.


Assuntos
Bactérias , Fungos , Manganês , Metais Pesados , Mineração , Microbiologia do Solo , Poluentes do Solo , China , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/metabolismo , Bactérias/classificação , Recuperação e Remediação Ambiental/métodos , Microbiota
3.
J Environ Manage ; 345: 118889, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666128

RESUMO

The impacts of natural restoration projects on soil microbial carbon (C) cycling functions have not been well recognized despite their wide implementation in the degraded karst areas of southwest China. In this study, metagenomic sequencing assays were conducted on functional genes and microorganisms related to soil C-cycling at three natural restoration stages (shrubbery, TG; secondary forest, SG; old-growth forest, OG) in the southeast of Guizhou Province, China. The aims were to investigate the changes in microbial potentials responsible for soil C cycling and the underlying driving forces. The natural restoration resulted in vegetation establishment at all three restoration stages, rendering alterations of soil microbial C cycle functions as indicated by metagenomic gene assays. When TG was restored into OG, the number and diversity of genes and microorganisms involved in soil C cycling remained unchanged, but their composition underwent significant shifts. Specifically, microbial potentials for soil C decomposition exhibited an increase driven by the collaborative efforts of plants and soils, while microbial potentials for soil C biosynthesis displayed an initial upswing followed by a subsequent decline which was primarily influenced by plants alone. In comparison to soil nutrients, it was determined that plant diversities served as the primary driving factor for the alterations in microbial carbon cycle potentials. Soil microbial communities involved in C cycling were predominantly attributed to Proteobacteria (31.87%-40.25%) and Actinobacteria (11.29%-26.07%), although their contributions varied across the three restoration stages. The natural restoration of degraded karst vegetation thus influences soil microbial C cycle functions by enhancing C decomposition potentials and displaying a nuanced pattern of biosynthesis potentials, primarily influenced by above-ground plants. These results provide valuable new insights into the regulation of soil C cycling during the restoration of degraded karst vegetation from genetic and microbial perspectives.


Assuntos
Ecossistema , Microbiota , Solo , Microbiologia do Solo , Plantas , China , Carbono
4.
Appl Microbiol Biotechnol ; 103(4): 1939-1951, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603851

RESUMO

Denitrification accounts for the production of mobile forms of nitrogen (N) for plant uptake, N leaching, and gaseous losses. However, few studies have investigated the potential effects of the natural restoration age on denitrification rates and denitrifying microorganisms, especially in fragile ecosystems in semiarid regions. The potential N gas (N2O and N2) emissions and denitrification rates significantly decreased after abandonment (< 9 years) compared to those of active farmland and then steadily increased as the restoration proceeded, leading to an enhanced soil N loss. The total bacterial and napA gene abundances significantly decreased after abandonment (< 9 years) compared to that of farmland and then significantly increased as the restoration proceeded. The abundances of the narG, nirK, nirS, qnorB, and nosZ genes steadily increased with the restoration age of abandoned farmland. The community compositions of denitrifying bacteria exhibited different fluctuating patterns, suggesting different response patterns of community traits of N gas emission-related functional guilds to the restoration age of abandoned farmland. Changes in N gas emissions and in the abundance and diversity of denitrifying microorganisms exhibited similar patterns, suggesting an increased population and diversity of denitrifying bacteria are responsible for the enhanced N gas emissions. We observed clear patterns of plant coverage and denitrifying microorganisms that were associated with increases in the organic C, NH4+-N, and NO3--N contents and decreases in the soil bulk density as well as increases in the abundance and diversity of denitrifiers with the restoration age of abandoned farmland that were linked to an increase in N gas emissions. It is therefore recommended that effective measures (i.e., modest levels of grazing) may be able to be undertaken to assist with decreasing greenhouse gas nitrous oxide (N2O) and N loss after 32 years of farmland abandonment.


Assuntos
Biota , Desnitrificação , Fazendas , Microbiologia do Solo , Clima Desértico , Genes Bacterianos , Fatores de Tempo
5.
Sci Total Environ ; 946: 174337, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964388

RESUMO

The tradeoff between community-level soil microbial metabolic efficiency and resource acquisition strategies during natural regeneration remains unclear. Herein, we examined variations in soil extracellular enzyme activity, microbial metabolic quotient (qCO2), and microbial carbon use efficiency (CUE) along a chronosequence of natural regeneration by sampling secondary forests at 1, 10, 20, 30, 40, and 100 years after rubber plantation (RP) clearance. The results showed that the natural logarithms of carbon (C)-, nitrogen (N)-, and phosphorus (P)-acquiring enzyme activities were 1:1.68:1.37 and 1:1.54:1.38 in the RP and secondary forests, respectively, thus demonstrating that microbial metabolism was co-limited by N and P. Moreover, the soil microbial C limitation initially increased (1-40 years) and later decreased (100 years). Overall, the qCO2 increased, decreased, and then increased again in the initial (< 10 years), middle (10-40 years), and late (100 years) successional stages, respectively. Except for specific P-acquiring enzyme activities, the changes in other indicators with natural regeneration were consistent in the dry and wet seasons. Both qCO2 and CUE were mainly predicted by microbial community composition and physiological traits. These results indicate that soil microbial communities could employ tradeoff strategies between metabolic efficiency and resource acquisition to cope with variations in resources. Our findings provide new information on tradeoff strategies between metabolic efficiency and resource acquisition during natural regeneration.


Assuntos
Microbiota , Microbiologia do Solo , Carbono/metabolismo , Solo/química , Nitrogênio/metabolismo , Fósforo/metabolismo , Florestas
6.
Mar Pollut Bull ; 201: 116193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428047

RESUMO

Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.


Assuntos
Alismatales , Ecossistema , Pradaria , Mar Mediterrâneo , Alismatales/fisiologia , Temperatura
7.
Sci Total Environ ; 937: 173504, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797411

RESUMO

Studying the relationship between biodiversity and ecosystem multifunctionality (the ability of ecosystems to provide multiple ecosystem functions) (BEMF) is a current hotspot in ecology research. Previous studies on BEMF emphasized the role of plant and microbial diversity but rarely mention stand spatial structure. To investigate the effect of stand spatial structure on BEMF, this study established 30 forest dynamic plots in three natural restoration stages (shrubbery, secondary growth forest, and old-growth forest) in Maolan National Nature Reserve, Guizhou province, China. A positive response in soil multifunctionality (SMF), plant species diversity, stand spatial structure, and fungal ß diversity (p < 0.05) followed natural restoration. However, bacterial ß diversity showed a negative response (p < 0.05), while microbial α diversity remained unchanged (p > 0.05). These results based on a structural equation model showed that plant species diversity had no direct or indirect effect on SMF, soil microbial diversity was the only direct driver of SMF, and stand spatial structure indirectly affected SMF through soil microbial diversity. The random forest model showed that soil microbial ß diversity and the Shannon-Wiener index of the diameter at breast height for woody plant species were the optimal variables to characterize SMF and soil microbial diversity, respectively. These results suggested that natural restoration promoted SMF, and microbial diversity had a direct positive effect on SMF. In the meantime, stand spatial structure had a significant indirect effect on SMF, while plant species diversity did not. Future work on degraded karst forest restoration should direct more attention to the role of the stand spatial structure and emphasize the importance of biodiversity.


Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Solo , China , Solo/química , Microbiota , Ecossistema , Fungos , Monitoramento Ambiental , Conservação dos Recursos Naturais
8.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1483-1491, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235005

RESUMO

Studies on niche and interspecific association can reveal plant interspecific relationship in the community, and provide theoretical support for promoting the transformation and development of plantation to natural forest. Based on Cunninghamia lanceolata investigation data of permanent plots of plantation in Jianfengling area of Hainan Tropical Rainforest National Park, we analyzed niche and interspecific association of the top 20 woody species in the community according to their importance values. The results showed that there were 163 species of woody species belonging to 101 genera and 55 families in the C. lanceolata plantation community, with complex species composition. As a constructive species, C. lanceolata had the highest importance value and niche breadth, and thus was the absolute dominant species in the community. It had a large niche overlap and niche similarity with many other species, among which the highest was observed in Adinandra hainanensis. The average niche overlap and niche similarity of the community were 0.54 and 0.49, respectively. The change trends of those two niche indicators were basically the same, indicating that some species were similar in resource demands. The overall association of main woody species was significantly positive. The χ2 test, association coefficient, Pearson correlation coefficient, and Spearman rank correlation coefficient suggested that the amounts of pairs with positive association were more than that with negative ones. The proportion of significant association species pairs was relatively low, indicating that the community stability was strong, species could coexist stably, and most species did not form close ties. On the whole, C. lanceolata had inhibited the regeneration of original tree species, and A. hainanensis, Garcinia oblongifolia, and Heptapleurum heptaphyllum could be used in natural transformation and restoration of C. lanceolata plantation in the Hainan Tropical Rainforest National Park.


Assuntos
Cunninghamia , Ecossistema , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/classificação , China , Floresta Úmida , Conservação dos Recursos Naturais , Árvores/crescimento & desenvolvimento , Árvores/classificação , Biodiversidade
9.
Sci Total Environ ; 930: 172767, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670358

RESUMO

Plant and microbial diversity plays vital roles in soil organic carbon (SOC) accumulation during ecosystem restoration. However, how soil microbial diversity mediates the positive effects of plant diversity on carbon accumulation during vegetation restoration remains unclear. We conducted a large-scale meta-analysis with 353 paired observations from 65 studies to examine how plant and microbial diversity changed over 0-160 years of natural restoration and its connection to SOC accrual in the topsoil (0-10 cm). Results showed that natural restoration significantly increased plant aboveground biomass (122.09 %), belowground biomass (153.05 %), and richness (21.99 %) and SOC accumulation (32.34 %) but had no significant impact on microbial diversity. Over time, bacterial and fungal richness increased and then decreased. The responses of major microbial phyla, in terms of relative abundance, varied across restoration and ecosystem types. Specifically, Ascomycota and Zygomycota decreased more under farmland abandonment than under grazing exclusion. In forest, Bacteroidetes, Ascomycota, and Zygomycota significantly decreased after natural restoration. The increase in SOC and Basidiomycota was higher in forest than in grassland. Based on standardized estimates, structural equation modeling showed that plant diversity had the highest positive effect (0.55) on SOC accrual, and while fungal diversity (0.15) also had a positive effective, bacterial diversity (-0.20) had a negative effect. Plant diversity promoted SOC accumulation by directly impacting biomass and soil moisture and total nitrogen and indirectly influencing soil microbial richness. This meta-analysis highlights the significant roles of plant diversity and microbial diversity in carbon accumulation during natural restoration and elucidates their relative contributions to carbon accumulation, thereby aiding in more precise predictions of soil carbon sequestration.


Assuntos
Biodiversidade , Carbono , Ecossistema , Recuperação e Remediação Ambiental , Plantas , Microbiologia do Solo , Bactérias/metabolismo , Carbono/análise , Recuperação e Remediação Ambiental/métodos , Fungos/metabolismo , Plantas/metabolismo , Solo/química
10.
Sci Total Environ ; 935: 173391, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796004

RESUMO

Long-term overgrazing may lead to the degradation of grasslands which are often characterized by an increase in nonpreferred species, especially toxic plants. However, the impact of these toxic nonpreferred species on the restoration processes of degraded grasslands is not well understood, particularly their interactions with soil properties and other plant functional groups. To address this knowledge gap, we conducted an in situ grazing exclusion experiment in a temperate degraded grassland of Inner Mongolia, China. The objective of this study was to investigate how toxic nonpreferred plants influence the recovery of plant diversity and productivity in degraded grasslands and whether these effects can be explained by changes in soil properties. Our findings revealed that Stellera chamaejasme, a toxic nonpreferred species widely distributed in North China, directly altered plant community composition and improved species diversity in degraded grasslands dominated by Asteraceae plants. The presence of S. chamaejasme could inhibit Asteraceae abundance and increase soil copper content in this study area, because Asteraceae plants have a high copper accumulation capacity. Within the communities with S. chamaejasme, the alleviation of soil copper limitation to plants may subsequently enhance the abundance and aboveground productivity of Poaceae and Forbs. Our study demonstrated that the strong direct and indirect interactions of toxic nonpreferred species with other ecosystem components promoted competitive release in terms of biomass accumulation and species diversity. The change of soil limiting microelements content caused by toxic species exerts an important mediation function during the recovery process of degraded grasslands. Thus, these toxic nonpreferred species can act primarily as accelerators for the restoration of community structure and ecosystem function in degraded grasslands.


Assuntos
Biodiversidade , Pradaria , China , Solo/química , Poaceae , Asteraceae/fisiologia
11.
Ying Yong Sheng Tai Xue Bao ; 35(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523085

RESUMO

To explore potential responses of ecosystem carbon density to changes of community structure during natural regeneration of woody plants, we analyzed the relationships between ecosystem carbon density and its components, tree species diversity, structural diversity (CVDBH) and spatial structure parameters (mingling, aggregation, dominance, crowding) of Cunninghamia lanceolata forests with different sprouting densities (1154, 847 and 465 individuals·hm-2) at the early stage of succession in Baishanzu National Park. The results showed that tree species diversity (species richness index and Shannon diversity index) increased with the decrease of sprouting density of C. lanceolata. Among the stand structural parameters, CVDBH, stand density, and mingling increased with the decrease of sprouting density of C. lanceolata. The stand distribution pattern of different C. lanceolata densities was uniform, with sub-dominant stand growth status and relatively dense status. The carbon density of tree layer under high, medium, and low sprouting densities of C. lanceolata were 57.56, 56.12 and 46.54 t·hm-2, soil carbon density were 104.35, 122.71 and 142.00 t·hm-2, and the total carbon density of ecosystem were 164.59, 182.41 and 190.13 t·hm-2, respectively. There was little variation in carbon density of understory layer and litter layer among different treatments. The carbon density distribution characteristics of different C. lanceolata densities were following the order of soil layer (63.4%-74.7%) > tree layer (24.5%-35.0%) > understory layer and litter layer (0.8%-2.0%). The results of variance partitioning analysis indicated that the change of tree layer carbon density was mainly influenced by stand structure diversity, soil layer carbon density was influenced by both tree species diversity and stand structure diversity, while ecosystem carbon density was mainly influenced by tree species diversity. Stand spatial structure parameters had a relatively little effect on ecosystem carbon density and its components. The sprouting density of C. lanceolata significantly affected ecosystem carbon accumulation during the conversion from C. lanceolata plantations to natural forests. A lower remaining density of C. lanceolata (about 500 individuals·hm-2) was more conducive to forest carbon sequestration.


Assuntos
Cunninghamia , Ecossistema , Humanos , Carbono/química , Florestas , Árvores , Solo/química , China
12.
Sci Total Environ ; 884: 163828, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121322

RESUMO

Vegetation restoration is the most important factor to restrain soil and water loss in the Chinese Loess Plateau, and its effect is long-term. Among them, the coupling and coordination relationship between vegetation and soil is the key to the smooth implementation of ecological restoration and the project of returning farmland to forest and grassland. However, people have neglected whether the choice of vegetation restoration method is suitable for the development of ecological environment in this region, and whether vegetation and soil coexist harmoniously. In this paper, the typical watersheds with similar terrain environment but different vegetation restoration methods were selected as the research objects, which were Dongzhuanggou (natural restoration, NR) and Yangjiagou (artificial restoration, AR). Through vegetation investigation and soil physical property experiment, the comprehensive evaluation function was used to quantify the impact of restoration methods on vegetation characteristics and soil properties, and the vegetation-soil coupling model was used to explore the coordinated development of vegetation and soil under different restoration methods. The results showed that there were significant differences between the two restoration methods in terms of vegetation characteristics (P < 0.05). The vegetation diversity indices of NR were 1.59-4.81 times that of AR. For root characteristic indices, NR was 1.05-2.25 times that of AR. For soil physical properties, there was no significant difference between the two restoration methods (P > 0.05). The comprehensive evaluation function of vegetation (VCE) and soil (SCE) under NR were 0.74 and 0.42, respectively, while those under AR were 0.55 and 0.63, respectively. The comprehensive function showed that the vegetation population performance under NR was slightly better than that under AR, while the soil restoration effect was opposite. Under the two restoration methods, the vegetation-soil coupling relationship was barely coordinated (NR: 0.53; AR: 0.54), and both were the intermediate coordinated development mode. The vegetation diversity, tending level and soil management level should be improved simultaneously during the process of vegetation restoration on the Chinese Loess Plateau.


Assuntos
Florestas , Solo , Humanos , China , Ecossistema
13.
Sci Total Environ ; 891: 164726, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290641

RESUMO

Natural restoration has often been considered an effective measure for rehabilitating degraded ecosystems. However, its impact on the structure and diversity of soil microbial communities, particularly within a salinized grassland during its restoration succession, remains unclear. In this study, we examined the effects of natural restoration on the Shannon-Wiener diversity index, Operational Taxonomic Units (OTU) richness, and structure of the soil microbial community of a sodic-saline grassland in China using high-throughput amplicon sequencing data from representative successional chronosequences. Our results indicated that natural restoration resulted in a significant mitigation of the grassland salinization (pH from 9.31 to 8.32 and electrical conductivity from 393.33 to 136.67 µs·cm-1) and a significant alteration of the soil microbial community structure of the grassland (p < 0.01). However, the effects of natural recovery differed in terms of the abundance and diversity of bacteria and fungi. For example, the relative abundance of the bacterial phyla Acidobacteria increased by 116.45 % in the topsoil and 339.03 % in the subsoil, while that of the fungal phyla Ascomycota decreased by 8.86 % in the topsoil and 30.18 % in the subsoil. There was no significant effect of restoration on bacterial diversity, but fungal diversity increased by 15.02 % in the Shannon-Wiener index and 62.20 % in the OTU richness in the topsoil. Model-selection analysis further corroborated that the alteration of the soil microbial structure by natural restoration may be due to the fact that the bacteria could adapt to the alleviated salinized grassland soil and the fungi could adapt to the improved soil fertility of the grasslands. Overall, our results contribute to an in-depth understanding of the impacts of natural restoration on soil microbial diversity and community structure in salinized grasslands during the long-term successional course. This may also help to apply natural restoration as a greener practice option for managing degraded ecosystems.


Assuntos
Microbiota , Solo , Solo/química , Pradaria , Microbiologia do Solo , Bactérias
14.
Environ Sci Pollut Res Int ; 28(16): 20598-20607, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405107

RESUMO

Microorganisms have a major influence on soil biogeochemical processes and vegetation establishment. However, their long-term succession patterns and short-term turnover are not well-understood in artificial forest ecosystems. The aim of the present study was to investigate the effects of stand ages and seasons on soil bacterial community in a chronosequence of Chinese Pinus massoniana plantations, in 3, 19, and 58-year-old plots. Soil physicochemical properties were measured in three stand ages between two seasons (dry-rainy). The soil bacterial community composition was determined by 16S rRNA Illumina HiSeq sequencing. The results showed that soil bacterial community diversity and structure significantly differed among three stand ages, but was not different between two seasons. The diversity of soil bacterial community increased with an increase in stand age. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla in the three stands. The soil bacterial community structure in all the stands was influenced by soil pH, available phosphorus content, and litter phosphorus content. With the accumulation of available phosphorus, the relative abundance of Acidobacteria decreased, while that of Proteobacteria increased. These shifts suggested that dominant microbial communities transitioned from oligotrophic to copiotrophic with increasing stand age. Extending rotation periods could increase soil bacterial diversity, and in turn help improving soil quality of P. massoniana plantations.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , Florestas , RNA Ribossômico 16S/genética
15.
Ying Yong Sheng Tai Xue Bao ; 32(3): 810-818, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754545

RESUMO

To investigate the plant community characteristics of alpine cutting blanks under different restoration approaches, we conducted a field survey on cutting blanks experienced either natural restoration (40 years) or artificial restoration (30, 40 and 50 years) in western Sichuan, with natural forests as the reference. Our results showed that after 40 years natural succession, cutting blank was replaced by the secondary shrub of Spiraea alpina, while artificial restoration plantation was dominated by Picea likiangensis var. rubescens. The similarity indices between these communities and natural forests were low (0.19) and medium (0.28-0.49), respectively. Cutting blank through natural and artificial restoration had lower species diversity in the shrub layer but higher diversity in the herb layer than that of natural forests. With the increases of recovery time, total cross-sectional area at breast height, wood volume, index of species diameter class distribution, diversity indices, and similarity indices between plantations and natural forests gradually increased, while stand density gradually decreased. Compared with natural forests, plantations were facing with problems including high stand density, unreasonable structure, pure stands of cohorts and poor regeneration.


Assuntos
Florestas , Picea , Biodiversidade , China , Ecossistema
16.
J Hazard Mater ; 405: 124689, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278724

RESUMO

Bauxite residue discharged to disposal areas, which could generate environmental pollution issues. Long-term natural restoration may improve the physicochemical properties of the residues, in turn supporting vegetation establishment, and effectively managing pollution. Nevertheless, the effects of short-term human intervention on soil formation in the weathered disposal areas are still relatively unknown. Thus, residue samples with different depths from different regions including no vegetation, sparse vegetation, complete vegetation coverage, and complete vegetation coverage following sewage sludge treatment were selected to analyze microbial community using Illumina high-throughput sequencing technology and evaluate soil formation process. Long-term weathering changed pH, the fraction of water-stable aggregates and nutrient concentrations, whilst promoting Proteobacteria, Chloroflexi, Acidobacteria and Planctomycete populations. Sewage sludge addition enhanced aggregate stability and significantly changed microbial community diversity. Sewage sludge application enriched the relative abundances of Proteobacteria and Bacteroidetes, whilst decreasing the relative abundance of Acidobacteria, which may be due to variation in environmental factors. Canonical correspondence analysis revealed that pH and EC were the main factors affecting microbial structure, followed by organic carbon content and aggregate stability. The results enhance the understanding of soil formation in bauxite residue and reveal the potential benefit of human intervention in ecological reconstruction at disposal areas.


Assuntos
Microbiota , Poluentes do Solo , Óxido de Alumínio , Humanos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
17.
Sci Total Environ ; 774: 145737, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33611012

RESUMO

Unraveling the succession of microbial communities is a core ecological research topic. Yet few studies have focused on how long-term secondary succession affects the functional profiles and ecological processes of abundant and rare microbial subcommunities. Here, we used amplicon sequencing and GeoChip analysis to explore the ecological functions of abundant and rare biospheres and their correlation with soil multinutrient cycling. Samples for this study were collected from a well-established secondary succession chronosequence that spans >30 years of dryland ecosystem development on the Loess Plateau of China. Although both abundant and rare subcommunities shifted with succession, the changing of beta-diversity of the microbial communities was primarily driven by species replacement of the rare biosphere. Phylogenetic changes of abundant and rare taxa were associated with their functional traits, which dominated the diversity-related selection along all succession ages. Neutral theory analysis indicated that the assemblage of abundant taxa over all successional ages was regulated by dispersal homogenizing and ecological drift. The null model revealed that homogeneous and variable selection were the dominant assembly processes for rare subcommunities compared with abundant species. pH and nitrogen content were the paramount drivers determining the assembly of microbial communities and functional genes, consistent with the importance of environmental filtering. Furthermore, the rare biosphere had a paramount role in the entire ecological network and was the major driver for most soil processes such as C, N, and S cycling. Nonetheless, a significant portion of soil P cycling was regulated by abundant taxa. Collectively, our study provides insight into the mechanisms underlying microbial community assembly and soil microbe-driven functional changes in biogeochemical processes during secondary succession.


Assuntos
Microbiologia do Solo , Solo , Bactérias , China , Filogenia
18.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2163-2172, 2018 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30039653

RESUMO

Changes in land use can have important impacts on soil carbon and nitrogen storage. To explore the effects of different land use types on soil carbon and nitrogen storage, we examined the differences of soil carbon and nitrogen storage, ratio of carbon to nitrogen and root biomass in the 0-100 cm soil layer of the natural grassland and Pinus tabuliformis plantation since the implementation of the project (15 years) of "Returning Farmland to Forest (Grassland)" in the Ziwuling forest region of the Loess Plateau, China. The results showed that soil organic carbon of both natural grassland and P. tabuliformis plantation showed surface polymerization effect. Soil organic carbon storage in the 0-20 cm soil layer of natural grassland was significantly lower than that of P. tabuliformis plantation, while the other soil layers showed no significant difference. The total soil carbon storage of P. tabuliformis plantation in the 0-100 cm soil layer was 117.94 Mg·hm-2, which was 28.4% higher than that of natural grassland. There was no significant difference in total nitrogen storage in different soil layers of the two vegetation types. The soil total nitrogen storage of natural grassland was 7.69 Mg·hm-2 in the 0-100 cm soil layer, which was 17.7% higher than P. tabuliformis plantation. There was significant difference in ammonium storage among different soil layers in natural grassland and P. tabuliformis plantation. The ammonium storage in natural grassland was significantly higher than that in P. tabuliformis plantation, exhibited first increase and then decrease trend with the increases of soil depth. Only in the 0-20 cm soil layer, nitrate storage in natural grassland was significantly higher than the P. tabuliformis plantation. The ratio of carbon to nitrogen of natural grassland and P. tabuliformis plantation showed no significant difference in 0-20 cm soil layer. With the increases of soil layers, the ratio of carbon to nitrogen in P. tabuliformis plantation were higher than in the natural grassland, and the difference increased gradually. In addition, soil carbon and nitrogen storage showed significantly positive correlation with root biomass in natural grassland and P. tabuliformis plantation. Therefore, natural grassland was conductive to the accumulation of soil nitrogen storage, and P. tabuliformis plantation was beneficial to increase soil carbon storage. Root was an important factor affecting the distribution of soil carbon and nitrogen storage.


Assuntos
Carbono/análise , Florestas , Nitrogênio/análise , Solo/química , Sequestro de Carbono , China , Raízes de Plantas
19.
Plant Divers ; 39(3): 140-148, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30159504

RESUMO

China has the largest area of inland geological phosphorus-rich (GPR) mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new data in order to analyze re-vegetation patterns and the status of plant communities in central Yunnan. The aim of our analysis was to suggest future improvements to restoration strategies in GPR mountain regions. Our results showed that spontaneous recovery was the most widespread type of restoration. N-fixing species such as Coriaria nepalensis and Alnus nepalensis play a vital role in succession. In the past, monoculture tree plantation was the primary method used in afforestation activities in central Yunnan; in recent years however, several different methods of restoration have been introduced including the use of agroforestry systems. For practical restoration, we found that spontaneous recovery was capable of delivering the best results, but that during its early stages, restoration results were affected by several factors including erosion risk, the origin of propagates and environmental variation. In contrast, methods employing human-made communities performed better in their early stages, but were constrained by higher costs and vulnerability to degradation and erosion. The use of N-fixing species such as A. nepalensis and Acacia mearnsii in plantations were unsuccessful in restoring full ecosystem functions. The success of restoration activities in GPR mountain regions could be improved through the following measures: (1) developing a better understanding of the respective advantages and disadvantages of current natural and human-engineered restoration approaches; (2) elucidating the feedback mechanism between phosphorus-rich soil and species selected for restoration, especially N-fixing species; (3) introducing market incentives aimed at encouraging specific restoration activities such as agroforestry, and improving the industry value chain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa