Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Muscle Nerve ; 59(1): 116-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265400

RESUMO

INTRODUCTION: Nebulin is a giant actin-binding protein in the thin filament of the skeletal muscle sarcomere. Studies of nebulin interactions are limited by the size, complexity, and poor solubility of the protein. We divided the nebulin super-repeat region into a super-repeat panel, and studied nebulin/actin interactions. METHODS: Actin binding was studied using a co-sedimentation assay with filamentous actin and 26 different nebulin super-repeats. RESULTS: The panel revealed notable differences in actin binding between the super-repeats. Both ends of the super-repeat region bound actin significantly more strongly, whereas the central part of the protein bound actin weakly. Thus, the binding between nebulin and actin formed a location-dependent pattern of strong vs. weak binding. DISCUSSION: The nebulin super-repeat panel allowed us to study the actin binding of each super-repeat individually. The panel will be a powerful tool in elucidating nebulin function in health and disease. Muscle Nerve 59:116-121, 2019.


Assuntos
Actinas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteínas Musculares/química , Músculo Esquelético/ultraestrutura , Ligação Proteica/fisiologia , RNA Mensageiro , Sequências Repetitivas de Ácido Nucleico , Regiões Terminadoras Genéticas/genética , Regiões Terminadoras Genéticas/fisiologia
2.
Hum Mutat ; 35(12): 1418-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25205138

RESUMO

A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies. In this update, we present the disease-causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM-related myopathies. Eighty-eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server (http://evs.gs.washington.edu/EVS/), identifying that pathogenic variants are a minor fraction of all coding variants (∼7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype-phenotype correlations in NEB-associated disease.


Assuntos
Proteínas Musculares/genética , Doenças Musculares/genética , Mutação , Processamento Alternativo , Animais , Cromossomos Humanos Par 2 , Bases de Dados Genéticas , Éxons , Genótipo , Humanos , Modelos Animais , Doenças Musculares/classificação , Fenótipo
3.
Respir Med Case Rep ; 50: 102069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881774

RESUMO

Background: Nemaline rod myopathy (NRM) is a rare muscle disorder defined by muscle weakness, respiratory insufficiency, and dysphagia. Respiratory muscle involvement can lead to acute hypercapnic respiratory failure, posing significant challenges in management. Case presentation: Our patient is a 73-year-old male with a history of polymyositis, who presented with acute hypercapnic respiratory failure secondary to a suspected polymyositis flare. Despite initial management, the patient experienced complications, including dysphagia, thrombocytopenia, and altered mental status. Neurological consultations revealed conflicting opinions regarding the primary diagnosis, suggesting inclusion body myositis. The patient's condition continued to deteriorate, prompting discussions about prognosis and palliative care options. This case highlights the challenges in managing respiratory failure in patients with late-onset nemaline myopathy and the importance of multidisciplinary care in addressing complex medical needs. Conclusion: This case emphasises the complexity of managing respiratory failure in patients with late-onset nemaline myopathy and the significance of adopting a multidisciplinary approach. Timely interventions, including respiratory support, dysphagia management, and palliative care discussions, are vital in optimizing patient care and quality of life. Further research is warranted to elucidate optimal management strategies and improve outcomes in this patient population.

4.
Neuromuscul Disord ; 32(6): 533-538, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35550111

RESUMO

Sporadic late onset nemaline myopathy (SLONM) and amyloid myopathy are frequently unrecognized acquired and treatable myopathies, which classically present with rapidly progressive and severe proximal muscle weakness. We report a case of SLONM and amyloid myopathy associated with IgM lambda monoclonal gammopathy in a 77-year-old Caucasian man. Creatine kinase (CK) was mildly elevated. Myositis panel was negative. Electromyogram showed prominent fibrillation potentials and positive sharp waves with myopathic motor unit action potentials. Muscle biopsy revealed nemaline rods and amyloid deposits with characteristic apple-green birefringence under polarized light, and liquid chromatography tandem mass spectroscopy detected a peptide profile consistent with AL (lambda) type amyloid deposition. Genetic testing for congenital nemaline rod myopathy was negative. The patient was treated with dexamethasone and chemotherapy x3 cycles with very good partial remission. CK and lambda light chain normalized. Our case emphasizes the importance of completing a thorough histochemical and pathological evaluation by muscle biopsy analysis, to provide timely and optimal treatment of these conditions.


Assuntos
Amiloidose , Doenças Musculares , Miopatias da Nemalina , Idoso , Amiloidose/patologia , Creatina Quinase , Eletromiografia , Humanos , Masculino , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Doenças Musculares/patologia , Miopatias da Nemalina/complicações , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/patologia
5.
J Clin Neurol ; 17(3): 409-418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34184449

RESUMO

BACKGROUND AND PURPOSE: Pathogenic variants in the myopalladin gene (MYPN) are known to cause mildly progressive nemaline/cap myopathy. Only nine cases have been reported in the English literature. METHODS: A detailed evaluation was conducted of the clinical, muscle magnetic resonance imaging (MRI), and genetic findings of two unrelated adults with MYPN-related cap myopathy. Genetic analysis was performed using whole-exome sequencing. MRI was performed on a 1.5-T device in patient 1. RESULTS: Two unrelated adults born to consanguineous parents, a 28-year-old male and a 23-year-old female, were diagnosed with pathogenic variants in MYPN that cause cap myopathy. Both patients presented with early-onset, insidiously progressive, and minimally disabling proximodistal weakness with mild ptosis, facial weakness, and bulbar symptoms. Patient 1 had a prominent foot drop from the onset. Both patients were followed up at age 30 years, at which point serum creatine kinase concentrations were minimally elevated. There were no cardiac symptoms; electrocardiograms and two-dimensional echocardiograms were normal in both patients. Muscle MRI revealed preferential involvement of the glutei, posterior thigh muscles, and anterior leg muscles. Whole-exome sequencing revealed significant homozygous splice-site variants in both of the probands, affecting intron 10 of MYPN: c.1973+1G>C (patient 1) and c.1974-2A>C (patient 2). CONCLUSIONS: This study elaborates on two patients with homozygous MYPN pathogenic variants, presenting as slowly progressive congenital myopathy. These patients are only the tenth and eleventh cases reported in the English literature, and the first from South Asia. The clinical phenotype reiterates the mild form of nemaline rod/cap myopathy. A comprehensive literature review is presented.

6.
Neuromuscul Disord ; 31(10): 955-967, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34561123

RESUMO

The nemaline myopathies constitute a large proportion of the congenital or structural myopathies. Common to all patients is muscle weakness and the presence in the muscle biopsy of nemaline rods. The causative genes are at least twelve, encoding structural or regulatory proteins of the thin filament, and the clinical picture as well as the histological appearance on muscle biopsy vary widely. Here, we suggest a renewed clinical classification to replace the original one, summarise what is known about the pathogenesis from mutations in each causative gene to the forms of nemaline myopathy described to date, and provide perspectives on pathogenetic mechanisms possibly open to therapeutic modalities.


Assuntos
Miopatias da Nemalina/genética , Actinas/genética , Biópsia , Humanos , Proteínas Musculares/genética , Debilidade Muscular/genética , Músculo Esquelético/patologia , Mutação , Sarcômeros/patologia
8.
Skelet Muscle ; 4: 15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25110572

RESUMO

BACKGROUND: Nemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), α-actin (ACTA1), α-tropomyosin (TPM3), ß-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament. Around 90% of the primary structure of nebulin is composed of approximately 35-residue α-helical domains, which form super repeats that bind actin with high affinity. Each super repeat has been proposed to harbor one tropomyosin-binding site. METHODS: We produced four wild-type (WT) nebulin super repeats (S9, S14, S18, and S22), 283 to 347 amino acids long, and five corresponding repeats with a patient mutation included: three missense mutations (p.Glu2431Lys, p.Ser6366Ile, and p.Thr7382Pro) and two in-frame deletions (p.Arg2478_Asp2512del and p.Val3924_Asn3929del). We performed F-actin and tropomyosin-binding experiments for the nebulin super repeats, using co-sedimentation and GST (glutathione-S-transferase) pull-down assays. We also used the GST pull-down assay to test the affinity of WT nebulin super repeats for WT α- and ß-tropomyosin, and for ß-tropomyosin with six patient mutations: p.Lys7del, p.Glu41Lys, p.Lys49del, p.Glu117Lys, p.Glu139del and p.Gln147Pro. RESULTS: WT nebulin was shown to interact with actin and tropomyosin. Both the nebulin super repeats containing the p.Glu2431Lys mutation and nebulin super repeats lacking exon 55 (p.Arg2478_Asp2512del) showed weak affinity for F-actin compared with WT fragments. Super repeats containing the p.Ser6366Ile mutation showed strong affinity for actin. When tested for tropomyosin affinity, super repeats containing the p.Glu2431Lys mutation showed stronger binding than WT proteins to tropomyosin, and the super repeat containing the p.Thr7382Pro mutation showed weaker binding than WT proteins to tropomyosin. Super repeats containing the deletion p.Val3924_Asn3929del showed similar affinity for actin and tropomyosin as that seen with WT super repeats. Of the tropomyosin mutations, only p.Glu41Lys showed weaker affinity for nebulin (super repeat 18). CONCLUSIONS: We demonstrate for the first time the existence of direct tropomyosin-nebulin interactions in vitro, and show that nebulin interactions with actin and tropomyosin are altered by disease-causing mutations in nebulin and tropomyosin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa