Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 435(1): 113907, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184222

RESUMO

Neosetophomone B (NSP-B) is a unique meroterpenoid fungal secondary metabolite that has previously demonstrated promising anti-cancer properties against various cancer cell lines in vitro. However, its in vivo anti-cancer potential remaines unexplored. To fill this gap in our knowledge, we tested NSP-B's in vivo anti-cancer activity using a zebrafish model, an organism that has gained significant traction in biomedical research due to its genetic similarities with humans and its transparent nature, allowing real-time tumor growth observation. For our experiments, we employed the K562-injected zebrafish xenograft model. Upon treating these zebrafish with NSP-B, we observed a marked reduction in the size and number of tumor xenografts. Delving deeper, our analyses indicated that NSP-B curtailed tumor growth and proliferation of leukemic grafted xenograft within the zebrafish. These results show that NSP-B possesses potent in vivo anti-cancer properties, making it a potential novel therapeutic agent for addressing hematological malignancies.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Xenoenxertos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Biol Int ; 48(2): 190-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885161

RESUMO

Multiple myeloma (MM) is a hematologic malignancy associated with malignant plasma cell proliferation in the bone marrow. Despite the available treatments, drug resistance and adverse side effects pose significant challenges, underscoring the need for alternative therapeutic strategies. Natural products, like the fungal metabolite neosetophomone B (NSP-B), have emerged as potential therapeutic agents due to their bioactive properties. Our study investigated NSP-B's antitumor effects on MM cell lines (U266 and RPMI8226) and the involved molecular mechanisms. NSP-B demonstrated significant growth inhibition and apoptotic induction, triggered by reduced AKT activation and downregulation of the inhibitors of apoptotic proteins and S-phase kinase protein. This was accompanied by an upregulation of p21Kip1 and p27Cip1 and an elevated Bax/BCL2 ratio, culminating in caspase-dependent apoptosis. Interestingly, NSP-B also enhanced the cytotoxicity of bortezomib (BTZ), an existing MM treatment. Overall, our findings demonstrated that NSP-B induces caspase-dependent apoptosis, increases cell damage, and suppresses MM cell proliferation while improving the cytotoxic impact of BTZ. These findings suggest that NSP-B can be used alone or in combination with other medicines to treat MM, highlighting its importance as a promising phytoconstituent in cancer therapy.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Apoptose , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células
3.
Biochem Biophys Res Commun ; 601: 59-64, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35228122

RESUMO

Neosetophomone B (NSP-B), a meroterpenoid fungal secondary metabolite, was investigated for its anticancer potential in leukemic cell lines (K562 and U937). NSP-B treatment of leukemic cells suppressed cell viability by triggering apoptotic cell death. Apoptosis induced by NSP-B is triggered by mitochondrial signaling and caspase activation. Additionally, NSP-B treatment of leukemic cells causes AKT's inactivation accompanied by downregulation of SKP2 oncogene and MTH1 with a concomitant increase of p21Cip1and p27Kip1. Furthermore, NSP-B causes suppression of antiapoptotic proteins, including cIAP1, cIAP2, XIAP, survivin and BCl-XL. Overall, NSP-B reduces cell viability by mitochondrial and caspase-dependent apoptosis. The inhibition of AKT and SKP2 axis could be a promising therapeutic target for leukemia treatment.


Assuntos
Enzimas Reparadoras do DNA , Leucemia , Monoéster Fosfórico Hidrolases , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Associadas a Fase S , Terpenos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enzimas Reparadoras do DNA/metabolismo , Humanos , Células K562 , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Células U937
4.
Front Pharmacol ; 15: 1352907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434705

RESUMO

In the current study, Neosetophomone B (NSP-B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues' flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of -36.85 kcal/mol for the FGF6-NSP-B complex, -43.87 kcal/mol for the FGF20-NSP-B complex, and -37.42 kcal/mol for the FGF22-NSP-B complex, and -41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of -30.05 kcal/mol for the FGF6-NSP-B complex, -39.62 kcal/mol for the FGF20-NSP-B complex, -34.89 kcal/mol for the FGF22-NSP-B complex, and -37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy.

5.
Front Oncol ; 12: 929996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847923

RESUMO

Abnormal expression of Forkhead box protein M1 (FOXM1) and serine/threonine kinase Budding uninhibited by benzimidazoles 1 (BUB1B) contributes to the development and progression of several cancers, including chronic myelogenous leukemia (CML). However, the molecular mechanism of the FOXM1/BUB1B regulatory network and the role of Neosetophomone-B (NSP-B) in leukemia remains unclear. NSP-B, a meroterpenoid fungal secondary metabolite, possesses anticancer potential in human leukemic cells lines; however, the underlying mechanism has not been elucidated. The present study aimed to explore the role of NSP-B on FOXM1/BUB1B signaling and the underlying molecular mechanism of apoptosis induction in leukemic cells. We performed gene expression profiling of NSP-B-treated and untreated leukemic cells to search for differentially expressed genes (DEGs). Interestingly BUB1B was found to be significantly downregulated (logFC -2.60, adjusted p = 0.001) in the treated cell line with the highest connectivity score among cancer genes. Analysis of TCGA data revealed overexpression of BUB1B compared to normal in most cancers and overexpression was associated with poor prognosis. BUB1B also showed a highly significant positive correlation with FOXM1 in all the TCGA cancer types. We used human leukemic cell lines (K562 and U937) as an in vitro study model to validate our findings. We found that NSP-B treatment of leukemic cells suppressed the expression of FOXM1 and BUB1B in a dose-dependent manner. In addition, NSP-B also resulted in the downregulation of FOXM1-regulated genes such as Aurora kinase A, Aurora kinase B, CDK4, and CDK6. Suppression of FOXM1 either by siRNA or NSP-B reduced BUB1B expression and enhanced cell survival inhibition and induction of apoptosis. Interestingly combination treatment of thiostrepton and NSP-B suppressed of cell viability and inducted apoptosis in leukemic cells via enhancing the activation of caspase-3 and caspase-8 compared with single-agent treatment. These results demonstrate the important role of the FOXM1/BUB1B pathway in leukemia and thus a potential therapeutic target.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa