Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 930
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2205986119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969758

RESUMO

The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.


Assuntos
Adaptação Fisiológica , Canidae , Filogenia , Adaptação Fisiológica/genética , Animais , Canidae/classificação , Canidae/genética , Demografia , Variação Genética , Genômica , América do Sul
2.
Proc Natl Acad Sci U S A ; 119(17): e2120015119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446705

RESUMO

Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined "Little Ice Age" (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.

3.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987559

RESUMO

Even in the genomics era, the phylogeny of Neotropical small felids comprised in the genus Leopardus remains contentious. We used whole-genome resequencing data to construct a time-calibrated consensus phylogeny of this group, quantify phylogenomic discordance, test for interspecies introgression, and assess patterns of genetic diversity and demographic history. We infer that the Leopardus radiation started in the Early Pliocene as an initial speciation burst, followed by another in its subgenus Oncifelis during the Early Pleistocene. Our findings challenge the long-held notion that ocelot (Leopardus pardalis) and margay (L. wiedii) are sister species and instead indicate that margay is most closely related to the enigmatic Andean cat (L. jacobita), whose whole-genome data are reported here for the first time. In addition, we found that the newly sampled Andean tiger cat (L. tigrinus pardinoides) population from Colombia associates closely with Central American tiger cats (L. tigrinus oncilla). Genealogical discordance was largely attributable to incomplete lineage sorting, yet was augmented by strong gene flow between ocelot and the ancestral branch of Oncifelis, as well as between Geoffroy's cat (L. geoffroyi) and southern tiger cat (L. guttulus). Contrasting demographic trajectories have led to disparate levels of current genomic diversity, with a nearly tenfold difference in heterozygosity between Andean cat and ocelot, spanning the entire range of variability found in extant felids. Our analyses improved our understanding of the speciation history and diversity patterns in this felid radiation, and highlight the benefits to phylogenomic inference of embracing the many heterogeneous signals scattered across the genome.


Assuntos
Felidae , Tigres , Animais , Filogenia , Felidae/genética , Evolução Biológica , Fluxo Gênico
4.
Am Nat ; 204(2): 147-164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008839

RESUMO

AbstractPhenotypic macroevolutionary studies provide insight into how ecological processes shape biodiversity. However, the complexity of phenotype-ecology relationships underscores the importance of also validating phenotype-based ecological inference with direct evidence of resource use. Unfortunately, macroevolutionary-scale ecological studies are often hindered by the challenges of acquiring taxonomically and spatially representative ecological data for large and widely distributed clades. The South American cichlid fish tribe Geophagini represents a continentally distributed radiation whose early locomotor morphological divergence suggests habitat as one ecological correlate of diversification, but an association between locomotor traits and habitat preference has not been corroborated. Field notes accumulated over decades of collecting across South America provide firsthand environmental records that can be mined for habitat data in support of macroevolutionary ecological research. In this study, we applied a newly developed method to transform descriptive field note information into quantitative habitat data and used it to assess habitat preference and its relationship to locomotor morphology in Geophagini. Field note-derived data shed light on geophagine habitat use patterns and reinforced habitat as an ecological correlate of locomotor morphological diversity. Our work emphasizes the rich data potential of museum collections, including often-overlooked material such as field notes, for evolutionary and ecological research.


Assuntos
Ciclídeos , Ecossistema , Fenótipo , Animais , Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Locomoção , América do Sul , Evolução Biológica , Biodiversidade
5.
BMC Plant Biol ; 24(1): 417, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760756

RESUMO

BACKGROUND: The Polygonaceae is a family well-known for its weeds, and edible plants, Fagopyrum (buckwheat) and Rheum (rhubarb), which are primarily herbaceous and temperate in distribution. Yet, the family also contains a number of lineages that are principally distributed in the tropics and subtropics. Notably, these lineages are woody, unlike their temperate relatives. To date, full-genome sequencing has focused on the temperate and herbaceous taxa. In an effort to increase breadth of genetic knowledge of the Polygonaceae, we here present six fully assembled and annotated chloroplast genomes from six of the tropical, woody genera: Coccoloba rugosa (a narrow and endangered Puerto Rican endemic), Gymnopodium floribundum, Neomillspaughia emarginata, Podopterus mexicanus, Ruprechtia coriacea, and Triplaris cumingiana. RESULTS: These assemblies represent the first publicly-available assembled and annotated plastomes for the genera Podopterus, Gymnopodium, and Neomillspaughia, and the first assembled and annotated plastomes for the species Coccoloba rugosa, Ruprechtia coriacea, and Triplaris cumingiana. We found the assembled chloroplast genomes to be above the median size of Polygonaceae plastomes, but otherwise exhibit features typical of the family. The features of greatest sequence variation are found among the ndh genes and in the small single copy (SSC) region of the plastome. The inverted repeats show high GC content and little sequence variation across genera. When placed in a phylogenetic context, our sequences were resolved within the Eriogonoideae. CONCLUSIONS: These six plastomes from among the tropical woody Polygonaceae appear typical within the family. The plastome assembly of Ruprechtia coriacea presented here calls into question the sequence identity of a previously published plastome assembly of R. albida.


Assuntos
Genoma de Cloroplastos , Polygonaceae , Polygonaceae/genética , Polygonaceae/classificação , Filogenia , Anotação de Sequência Molecular
6.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
7.
Mol Phylogenet Evol ; 190: 107970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995894

RESUMO

Armored catfishes of the genus Eurycheilichthys are endemic to Southern Brazil and Misiones (Argentina) comprising nine species of small size, with a high degree of sympatry and species diversity distributed in two river basins. Here we use new genome-wide data to infer a species phylogeny and test species boundaries for this poorly known group. We estimate 1) the phylogenetic relationships of the species of Eurycheilichthys based on 29,350 loci in 65 individuals of nine species plus outgroups, and 2) the population structure and differentiation based on 43,712 loci and 62 individuals to estimate how geography may have acted on speciation and formation of the sympatric species groups. Analyses support the monophyly of the genus and suggest two species-inclusive clades (East and West) with high support and very recently diverged species. Western clade contains E. limulus (from upper Jacuí River basin) that is sister to Western species of the Taquari-Antas basin plus E. paucidens. The Eastern clade contains E. pantherinus (from Uruguay River basin) sister to the Eastern species of the Taquari-Antas basin E. coryphaenus, plus the central-distributed species E. planus and E. vacariensis, and the more widely-distributed species E. luisae. Eurycheilichthys luisae is not monophyletic and may contain one or more cryptic species or hybrid individuals. A stronger diversity on structure of lineages on the Taquari-Antas, when compared to upper Uruguay and Jacuí River basins, and the fact that most of the sympatrically distributed taxa have non-sister relationships suggest a scenario of mainly allopatric speciation and may indicate a more dynamic landscape with headwater capture events among these tributaries.


Assuntos
Peixes-Gato , Simpatria , Humanos , Animais , Filogenia , Peixes-Gato/genética , Geografia , Brasil
8.
Mol Phylogenet Evol ; 191: 107971, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000706

RESUMO

The iconic mountains of the Pantepui biogeographical region host many early-diverging endemic animal and plant lineages, concurring with Conan Doyle's novel about an ancient "Lost World". While this is the case of several frog lineages, others appear to have more recent origins, adding to the controversy around the diversification processes in this region. Due to its remoteness, Pantepui is challenging for biological surveys, and only a glimpse of its biodiversity has been described, which hampers comprehensive evolutionary studies in many groups. During a recent expedition to the Neblina massif on the Brazil-Venezuela border, we sampled two new frog species that could not be assigned to any known genus. Here, we perform phylogenetic analyses of mitogenomic and nuclear loci to infer the evolutionary relationships of the new taxa and support their description. We find that both species represent single lineages deeply nested within Brachycephaloidea, a major Neotropical clade of direct-developing frogs. Both species diverged >45 Ma from their closest relatives: the first is sister to all other Brachycephaloidea except for Ceuthomantis, another Pantepui endemic, and the second is sister to Brachycephalidae, endemic to the Brazilian Atlantic Forest. In addition to these considerable phylogenetic and biogeographic divergences, external morphology and osteological features support the proposition of two new family and genus-level taxa to accommodate these new branches of the amphibian tree of life. These findings add to other recently described ancient vertebrate lineages from the Neblina massif, providing a bewildering reminder that our perception of the Pantepui's biodiversity remains vastly incomplete. It also provides insights into how these mountains acted as "museums" during the diversification of Brachycephaloidea and of Neotropical biotas more broadly, in line with the influential "Plateau theory". Finally, these discoveries point at the yet unknown branches of the tree of life that may go extinct, due to global climate change and zoonotic diseases, before we even learn about their existence, amphibians living at higher elevations being particularly at risk.


Assuntos
Anuros , Museus , Animais , Filogenia , Anuros/genética , Biodiversidade , Evolução Biológica
9.
Mol Phylogenet Evol ; 190: 107965, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977500

RESUMO

Poeciliids (Cyprinodontiformes: Poeciliidae), commonly known as livebearers, are popular fishes in the aquarium trade (e.g., guppies, mollies, swordtails) that are widely distributed in the Americas, with 274 valid species in 27 genera. This group has undergone various taxonomic changes recently, spurred by investigations using traditional genetic markers. Here we used over 1,000 ultraconserved loci to infer the relationships within Poeciliidae in the first attempt at understanding their diversification based on genome-scale data. We explore gene tree discordance and investigate potential incongruence between concatenation and coalescent inference methods. Our aim is to examine the influence of incomplete lineage sorting and reticulate evolution on the poeciliids' evolutionary history and how these factors contribute to the observed gene tree discordace. Our concatenated and coalescent phylogenomic inferences recovered four major clades within Poeciliidae. Most supra-generic level relationships we inferred were congruent with previous molecular studies, but we found some disagreements; the Middle American taxa Phallichthys and Poecilia (Mollienesia) were recovered as non-monophyletic, and unlike other recent molecular studies, we recovered Brachyrhaphis as monophyletic. Our study is the first to provide signatures of reticulate evolution in Poeciliidae at the family level; however, continued finer-scale investigations are needed to understand the complex evolutionary history of the family along with a much-needed taxonomic re-evaluation.


Assuntos
Ciprinodontiformes , Poecilia , Animais , Filogenia , Ciprinodontiformes/genética , Poecilia/genética , Genoma , Marcadores Genéticos
10.
Mol Phylogenet Evol ; 193: 108026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341007

RESUMO

Ricinulei or hooded tick-spiders are a cryptic and ancient group of arachnids. The order consists of around 100 highly endemic extant species restricted to the Afrotropics and the Neotropics along with 22 fossil species. Their antiquity and low vagility make them an excellent group with which to interrogate biogeographic questions. To date, only four molecular analyses have been conducted on the group and they failed to resolve the relationships of the main lineages and even recovering the non-monophyly of the three genera. These studies were limited to a few Sanger loci or phylogenomic analyses with at most seven ingroup samples. To increase phylogenetic resolution in this little-understood and poorly studied group, we present the most comprehensive phylogenomic study of Ricinulei to date leveraging the Arachnida ultra-conserved element probe set. With a data set of 473 loci across 96 ingroup samples, analyses resolved a monophyletic Neotropical clade consisting of four main lineages. Two of them correspond to the current genera Cryptocellus and Pseudocellus while topology testing revealed one lineage to likely be a phylogenetic reconstruction artefact. The fourth lineage, restricted to Northwestern, Andean South America, is consistent with the Cryptocellus magnus group, likely corresponding to the historical genus Heteroricinoides. Since we did not sample the type species for this old genus, we do not formally re-erect Heteroricinoides but our data suggest the need for a thorough morphological re-examination of Neotropical Ricinulei.


Assuntos
Aracnídeos , Aranhas , Animais , Aracnídeos/genética , Filogenia , América do Sul
11.
Mol Phylogenet Evol ; 192: 108008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181828

RESUMO

Two main landscapes emerge from the Guiana Shield: the highlands to the west called the Pantepui region and the Amazonian lowlands to the east, both harbouring numerous endemic species. With 32 currently recognized species, the genus Anomaloglossus stands out among Neotropical frogs as one that diversified only within the Guiana Shield both in the highlands and the lowlands. We present a time-calibrated phylogeny obtained by using combined mitogenomic and nuclear DNA, which suggests that the genus originates from Pantepui where extant lineages started diversifying around 21 Ma, and subsequently (ca. 17 Ma) dispersed during the Miocene Climatic Optimum to the lowlands of the eastern Guiana Shield where the ability to produce endotrophic tadpoles evolved. Further diversification within the lowlands in the A. stepheni group notably led to an evolutionary reversal toward exotrophy in one species group during the late Miocene, followed by reacquisition of endotrophy during the Pleistocene. These successive shifts of reproductive mode seem to have accompanied climatic oscillations. Long dry periods might have triggered evolution of exotrophy, whereas wetter climates favoured endotrophic forms, enabling colonization of terrestrial habitats distant from water. Acquisition, loss, and reacquisition of endotrophy makes Anomaloglossus unique among frogs and may largely explain the current species diversity. The micro evolutionary processes involved in these rapid shifts of reproductive mode remain to be revealed.


Assuntos
Anuros , Ecossistema , Animais , Anuros/genética , Filogenia , Filogeografia
12.
Mol Phylogenet Evol ; 190: 107960, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918683

RESUMO

The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.


Assuntos
Zamiaceae , Filogenia , Zamiaceae/genética , Filogeografia , Ecossistema , Fatores de Tempo
13.
Glob Chang Biol ; 30(8): e17455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136122

RESUMO

Declines in body size can be an advantageous physiological response to warming temperatures, or a result of physiological and nutritional stress. Either way, studies often assume that these climate-induced trait changes have important implications for fitness and demography. We leveraged almost three decades of capture-mark-recapture data of 51 bird species in Panama to examine if body size has changed through time, how sensitive body size is to changes in weather, and if body size impacts population demography. We evaluated two metrics of body size, structural size (wing length), and body condition (residual body mass). Over the study, wing length changed in varying directions for 88% of species (23 decrease, 22 increase), but the effects were weak, and change was only significant for two species. Conversely, body condition declined for 88% of species (45), effects were stronger, and that change was significant for 22% of species (11). This suggests that nutritional stress is likely the cause of changes in body size, not an adaptive response to warming. Precipitation metrics impacted body condition across three of our four feeding guilds, while wing length was only impacted by weather metrics for two guilds. This suggests that body condition is more sensitive to change in weather metrics compared to wing length. Lastly, we found that the impact of changes in body size on survival and recruitment was variable across species, but these relationships were in the opposite direction, ultimately resulting in no change in population growth for all but one species. Thus, while different stages (adult survival and recruitment) of populations may be impacted by body size, populations appear to be buffered from changes. The lack of an effect on population growth rate suggests that populations may be more resilient to changes in body size, with implications for population persistence under expected climate change.


Assuntos
Aves , Tamanho Corporal , Animais , Aves/fisiologia , Aves/crescimento & desenvolvimento , Panamá , Clima Tropical , Mudança Climática , Crescimento Demográfico , Asas de Animais/anatomia & histologia
14.
Syst Biol ; 72(5): 973-983, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260367

RESUMO

Past sea level changes and geological instability along watershed boundaries have largely influenced fish distribution across coastal basins, either by dispersal via palaeodrainages now submerged or by headwater captures, respectively. Accordingly, the South American Atlantic coast encompasses several small and isolated drainages that share a similar species composition, representing a suitable model to infer historical processes. Leporinus bahiensis is a freshwater fish species widespread along adjacent coastal basins over narrow continental shelf with no evidence of palaeodrainage connections at low sea level periods. Therefore, this study aimed to reconstruct its evolutionary history to infer the role of headwater captures in the dispersal process. To accomplish this, we employed molecular-level phylogenetic and population structure analyses based on Sanger sequences (5 genes) and genome-wide SNP data. Phylogenetic trees based on Sanger data were inconclusive, but SNPs data did support the monophyletic status of L. bahiensis. Both COI and SNP data revealed structured populations according to each hydrographic basin. Species delimitation analyses revealed from 3 (COI) to 5 (multilocus approach) MOTUs, corresponding to the sampled basins. An intricate biogeographic scenario was inferred and supported by Approximate Bayesian Computation (ABC) analysis. Specifically, a staggered pattern was revealed and characterized by sequential headwater captures from basins adjacent to upland drainages into small coastal basins at different periods. These headwater captures resulted in dispersal throughout contiguous coastal basins, followed by deep genetic divergence among lineages. To decipher such recent divergences, as herein represented by L. bahiensis populations, we used genome-wide SNPs data. Indeed, the combined use of genome-wide SNPs data and ABC method allowed us to reconstruct the evolutionary history and speciation of L. bahiensis. This framework might be useful in disentangling the diversification process in other neotropical fishes subject to a reticulate geological history.


Assuntos
Caraciformes , Polimorfismo de Nucleotídeo Único , Animais , Filogenia , Filogeografia , Teorema de Bayes , Caraciformes/genética , Variação Genética
15.
Am J Bot ; 111(4): e16306, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38557829

RESUMO

Decades of empirical research have revealed how the geological history of our planet shaped plant evolution by establishing well-known patterns (e.g., how mountain uplift resulted in high rates of diversification and replicate radiations in montane plant taxa). This follows a traditional approach where botanical data are interpreted in light of geological events. In this synthesis, I instead describe how by integrating natural history, phylogenetics, and population genetics, botanical research can be applied alongside geology and paleontology to inform our understanding of past geological and climatic processes. This conceptual shift aligns with the goals of the emerging field of geogenomics. In the neotropics, plant geogenomics is a powerful tool for the reciprocal exploration of two long standing questions in biology and geology: how the dynamic landscape of the region came to be and how it shaped the evolution of the richest flora. Current challenges that are specific to analytical approaches for plant geogenomics are discussed. I describe the scale at which various geological questions can be addressed from biological data and what makes some groups of plants excellent model systems for geogenomics research. Although plant geogenomics is discussed with reference to the neotropics, the recommendations given here for approaches to plant geogenomics can and should be expanded to exploring long-standing questions on how the earth evolved with the use of plant DNA.


Assuntos
Plantas , Plantas/genética , Genômica , Evolução Biológica , Filogenia , Botânica , Genoma de Planta , Geologia
16.
Environ Res ; 258: 119374, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885824

RESUMO

DNA barcoding and environmental DNA (eDNA) represent significant advances for biomonitoring the world's biodiversity and its threats. However, these methods are highly dependent on the presence of species sequences on molecular databases. Brazil is one of the world's largest and most biologically diverse countries. However, many knowledge gaps still exist for describing, identifying, and monitoring of mammalian biodiversity using molecular methods. We aimed to unravel the patterns of the presence of Brazilian mammal species on molecular databases to improve our understanding of how effectively it would be to monitor them using DNA barcoding and environmental DNA, and contribute to mammalian conservation. We foundt many gaps in molecular databases, with many taxa being poorly represented, particularly from Amazonia, the order Lagomorpha, and arboreal, gomivorous, near extinct, and illegally traded species. Moreover, our analyses revealed that species description year was the most important factor determining the probability of a species to being sequenced. Primates are the group with the highest number of species considered a priority for sequencing due to their high level of combined threats. We highlight where investments are needed to fill knowledge gaps and increase the representativity of species on molecular databases to enable a better monitoring ability of Brazilian mammals encompassing different traits using DNA barcoding and environmental DNA.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Mamíferos , Animais , Brasil , Mamíferos/genética , Mamíferos/classificação , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos
17.
J Invertebr Pathol ; 205: 108145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821315

RESUMO

Avian schistosomes inhabit the blood stream of domestic and wild birds with aquatic snails as their intermediate hosts. In the Neotropics there is an emerging effort to describe species from these hosts, including Chile, although the knowledge about their pathological consequences is mostly understudied. This study aimed to describe the pathological changes associated with the parasitism of a native schistosomatid restricted to the Southern Cone of Neotropics. To achieve this, a total of 401 Chilina dombeiana snails (Chilinidae) were collected in two locations from Southern Chile. All of them were disposed to cercarial release procedure for three consecutive days. Furcocercariae released were stained and characterized by microscopic evaluation. Then, all snails were dissected under stereomicroscope and preserved in 10 % buffered formalin until histopathological analysis was performed. Eight out 401 (P = 2 %) snails were found parasitized with avian schistosomes. The released furcocercariae were identified as Schistosomatidae gen. sp. Lineage II which was previously reported in the same host. The main pathological change was an atrophy of ovotestes and an absence or mild infiltration of hemocytes in the surrounding tissues. Besides, a co-infection with echinostomes was found which was associated with a moderate hemocyte infiltration, granuloma-like lesion, and a reduced presence of schistosome' sporocysts. The latter would suggest an antagonistic interaction between these two digeneans, as has been proposed in the Echinostoma spp.-Schistosoma mansoni model. Despite the above, the release of furcocercariae was present but reduced, in contrast with the non-release of echinocercariae. This interaction requires further attention. This study represents the first attempt to characterize the pathological consequences of parasitism by a native, yet undescribed, avian schistosome in an endemic snail. Future studies should consider experimental infections to understand the dynamics of single infections in other Chilina species, including inter- and intra-specific parasitism as previous studies have found, including this study.


Assuntos
Aves , Schistosomatidae , Caramujos , Animais , Chile , Caramujos/parasitologia , Schistosomatidae/isolamento & purificação , Aves/parasitologia , Doenças das Aves/parasitologia , Doenças das Aves/patologia , Água Doce/parasitologia , Interações Hospedeiro-Parasita
18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731475

RESUMO

Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host-community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.


Assuntos
Biodiversidade , Ecossistema , Hemípteros/parasitologia , Interações Hospedeiro-Parasita , Animais , Hemípteros/classificação , Hemípteros/genética , Dinâmica não Linear , Filogenia
19.
J Helminthol ; 98: e47, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828707

RESUMO

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Assuntos
Estágios do Ciclo de Vida , Filogenia , Schistosomatidae , Animais , Schistosomatidae/genética , Schistosomatidae/classificação , Schistosomatidae/isolamento & purificação , Schistosomatidae/crescimento & desenvolvimento , Schistosomatidae/anatomia & histologia , Chile , Argentina , Aves/parasitologia , Doenças das Aves/parasitologia , RNA Ribossômico 28S/genética , Caramujos/parasitologia , América do Sul , Complexo IV da Cadeia de Transporte de Elétrons/genética
20.
BMC Plant Biol ; 23(1): 661, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124025

RESUMO

Encyclia is the second-largest genus in the neotropical subtribe Laeliinae (Orchidaceae) and has more than 150 species, which are characterized by fairly consistent flower morphology. Its taxonomy and species boundaries, however, seem to be still under debate. In the present study, we first examined the lip micromorphology of 61 species of Encyclia sensu stricto. We correlated our results with external flower morphology and phylogenetic analyses performed on a combined dataset that included both nuclear (ITS, Xdh, PhyC) and plastid markers (ycf1, rpl32, and trnL-trnF). Phylogenetic reconstruction showed that Encyclia sensu stricto species form a coherent, monophyletic group. However, it is difficult to determine the relationships between the different groups within one larger clade. The groups all form distinct lineages that evolved from a common ancestor. The UPGMA cluster analysis for the seven qualitative micromorphological features clearly divides the genus into two main groups, the larger of which is further subdivided into two subgroups. None of these, however, overlap with any of the phylogeographic units distinguished in previously published papers or in presented article. It is worth noting that the groups resulting from the UPGMA analysis cannot be defined by macromorphological features. The pattern of similarities between species, taking into account both macro- and micromorphological features, is eminently mosaic in nature, and only a multifaceted approach can explain this enigmatic group.


Assuntos
Orchidaceae , Filogenia , Orchidaceae/anatomia & histologia , Plastídeos/genética , Flores/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa