RESUMO
Hypertension is an important risk factor for Alzheimer's disease (AD) and all-cause dementia. The mechanisms underlying this association are unclear. Hypertension may be associated with AD neuropathological changes (ADNC), but reports are sparse and inconsistent. This systematic review included 15 autopsy studies (n = 5879) from observational cohorts. Studies were highly heterogeneous regarding populations, follow-up duration, hypertension operationalization, neuropathological methods, and statistical analyses. Hypertension seems associated with higher plaque and tangle burden, but results are inconsistent. Four studies (n = 3993/5879; 68%), reported clear associations between hypertension and ADNC. Another four suggested that antihypertensive medication may protect against ADNC. Larger studies with longer follow-up reported the strongest relationships. Our findings suggest a positive association between hypertension and ADNC, but effects may be modest, and possibly attenuate with higher hypertension age and antihypertensive medication use. Investigating interactions among plaques, tangles, cerebrovascular pathology, and dementia may be key in better understanding hypertension's role in dementia development.
Assuntos
Doença de Alzheimer , Hipertensão , Humanos , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Autopsia , Anti-Hipertensivos/uso terapêutico , Placa Amiloide/patologia , Hipertensão/complicações , Encéfalo/patologiaRESUMO
INTRODUCTION: Alzheimer disease (AD) and related dementias are characterized by damage caused by neuropathological lesions in the brain. These include AD lesions (plaques and tangles) and non-AD lesions such as vascular injury or Lewy bodies. We report here an assessment of lesion association to dementia in a large clinic-based population. METHODS: We identified 5272 individuals with neuropathological data from the National Alzheimer's Coordinating Center. Individual lesions, as well as a neuropathological composite score (NPCS) were tested for association with dementia, and both functional and neurocognitive impairment using regression models. RESULTS: Most individuals exhibited mixed pathologies, especially AD lesions in combination with non-AD lesions. All lesion types were associated with one or more clinical outcomes; most even while controlling for AD pathology. The NPCS was also associated with clinical outcomes. DISCUSSION: These data suggest mixed-type pathologies are extremely common in a clinic-based population and may contribute to dementia and cognitive impairment.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Emaranhados Neurofibrilares/patologia , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Encéfalo/patologia , Corpos de Lewy/patologia , Placa Amiloide/patologiaRESUMO
Understanding the physiopathology of Alzheimer's disease (AD) has improved substantially based on studies of mouse models mimicking at least one aspect of the disease. Many transgenic lines have been established, leading to amyloidosis but lacking neurodegeneration. The aim of the current study was to generate a novel mouse model that develops neuritic plaques containing the aggressive pyroglutamate modified amyloid-ß (pEAß) species in the brain. The TAPS line was developed by intercrossing of the pEAß-producing TBA2.1 mice with the plaque-developing line APPswe/PS1ΔE9. The phenotype of the new mouse line was characterized using immunostaining, and different cognitive and general behavioral tests. In comparison to the parental lines, TAPS animals developed an earlier onset of pathology and increased plaque load, including striatal pEAß-positive neuritic plaques, and enhanced neuroinflammation. In addition to abnormalities in general behavior, locomotion, and exploratory behavior, TAPS mice displayed cognitive deficits in a variety of tests that were most pronounced in the fear conditioning paradigm and in spatial learning in comparison to the parental lines. In conclusion, the combination of a pEAß- and a plaque-developing mouse model led to an accelerated amyloid pathology and cognitive decline in TAPS mice, qualifying this line as a novel amyloidosis model for future studies.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , CamundongosRESUMO
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal ß-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Encéfalo/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Neuropatologia , Placa Amiloide , Proteínas tau/metabolismoRESUMO
INTRODUCTION: Downregulation of brain-derived neurotrophic factor (BDNF) and its cognate neurotrophin receptor, TrkB, were observed during the progression of dementia, but whether the Alzheimer's disease (AD) pathological lesions diffuse plaques, (DPs), neuritic plaques (NPs), and neurofibrillary tangles (NFTs) are related to this alteration remains to be clarified. METHODS: Negative binomial (NB) regressions were performed using gene expression data accrued from a single population of CA1 pyramidal neurons and regional hippocampal dissections obtained from participants in the Rush Religious Orders Study (RROS). RESULTS: Downregulation of Bdnf is independently associated with increased entorhinal cortex NPs. Downregulation of TrkB is independently associated with increased entorhinal cortex NFTs and CA1 NPs during the progression of AD. DISCUSSION: Results indicate that BDNF and TrkB dysregulation contribute to AD neuropathology, most notably hippocampal NPs and NFTs. These data suggest attenuating BDNF/TrkB signaling deficits either at the level of BDNF, TrkB, or downstream of TrkB signaling may abrogate NPs and/or NFTs.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Hipocampo/metabolismo , Glicoproteínas de Membrana/biossíntese , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Receptor trkB/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Expressão Gênica , Hipocampo/patologia , Humanos , Masculino , Glicoproteínas de Membrana/genética , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Placa Amiloide/genética , Placa Amiloide/patologia , Valor Preditivo dos Testes , Receptor trkB/genéticaRESUMO
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.
Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Hipocampo/patologia , Fatores de Crescimento Neural/metabolismo , Células Piramidais/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Disfunção Cognitiva/metabolismo , Progressão da Doença , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Células Piramidais/metabolismoRESUMO
Reticulon 3 (RTN3) has previously been shown to interact with BACE1 and negatively regulate BACE1 activity. To what extent RTN3 deficiency affects BACE1 activity is an intriguing question. In this study, we aimed to address this by generating RTN3-null mice. Mice with complete deficiency of RTN3 grow normally and have no obviously discernible phenotypes. Morphological analyses of RTN3-null mice showed no significant alterations in cellular structure, although RTN3 is recognized as a protein contributing to the shaping of tubular endoplasmic reticulum. Biochemical analysis revealed that RTN3 deficiency increased protein levels of BACE1. This elevation of BACE1 levels correlated with enhanced processing of amyloid precursor protein at the ß-secretase site. We also demonstrated that RTN3 deficiency in Alzheimer's mouse models facilitates amyloid deposition, further supporting an in vivo role of RTN3 in the regulation of BACE1 activity. Since it has been shown that RTN3 monomer is reduced in brains of Alzheimer's patients, our results suggest that long-lasting reduction of RTN3 levels has adverse effects on BACE1 activity and may contribute to Alzheimer's pathogenesis.
Assuntos
Secretases da Proteína Precursora do Amiloide/biossíntese , Ácido Aspártico Endopeptidases/biossíntese , Regulação Enzimológica da Expressão Gênica , Proteínas do Tecido Nervoso/deficiência , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/patologiaRESUMO
Genetic analysis of familial forms of Alzheimer's disease (AD) causally links the proteolytic processing of the amyloid precursor protein (APP) and AD. However, the specific type of amyloid and mechanisms of amyloid pathogenesis remain unclear. We conducted a detailed analysis of intracellular amyloid with an aggregation specific conformation dependent monoclonal antibody, M78, raised against fibrillar Aß42. M78 immunoreactivity colocalizes with Aß and the carboxyl terminus of APP (APP-CTF) immunoreactivities in perinuclear compartments at intermediate times in 10month 3XTg-AD mice, indicating that this represents misfolded and aggregated protein rather than normally folded APP. At 12months, M78 immunoreactivity also accumulates in the nucleus. Neuritic plaques at 12months display the same spatial organization of centrally colocalized M78, diffuse chromatin and neuronal nuclear NeuN staining surrounded by peripheral M78 and APP-CTF immunoreactivity as observed in neurons, indicating that neuritic plaques arise from degenerating neurons with intracellular amyloid immunoreactivity. The same staining pattern was observed in neuritic plaques in human AD brains, showing elevated intracellular M78 immunoreactivity at intermediate stages of amyloid pathology (Braak A and B) compared to no amyloid pathology and late stage amyloid pathology (Braak 0 and C, respectively). These results indicate that intraneuronal protein aggregation and amyloid accumulation is an early event in AD and that neuritic plaques are initiated by the degeneration and death of neurons by a mechanism that may be related to the formation of extracellular traps by neutrophils.
Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios/patologia , Placa Amiloide/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Alzheimer's disease (AD) pathology was assessed in 587 nondemented subjects, with age at death at or more than 50 years. In 307 subjects, amyloid-ß (Aß) immunoreactive (IR) plaques were seen; in 192 subjects, neuritic plaques (NPs) stained with modified Bielschowsky silver stain (mBky) were observed. In 20% of the whole cohort and in 62% of the 192 subjects with NPs in mBky, hyperphosphorylated tau (HPtau) IR NPs were seen. In most cases in this nondemented cohort, the HPtau IR NPs were observed either sparsely or to a moderate extent. The correlation between the NP score and Braak stage was best (r=0.6, P<.001) when HPtau immunohistochemistry was used. Eighty-three percent of the subjects could not be categorized following the 1997 National Institute on Aging and the Reagan Institute (NIA-RI) recommendations, whereas the 2012 National Institute on Aging-Alzheimer's Association (NIA-AA) guidelines were applicable for all study subjects. Twenty-eight subjects had an intermediate level of AD neuropathological change according to the 2012 NIA-AA guidelines, and 25 of these 28 subjects displayed HPtau IR NPs in the temporal cortex. It is noteworthy, however, that as many as 119 out of the 192 subjects with NPs in mBky displayed HPtau IR NPs in the temporal cortex. Ninety-four of these 119 subjects with neocortical HPtau IR NPs had a low level of neuropathological AD change according to the 2012 NIA-AA guidelines because they were in Braak stages I and II. Thus, 94 subjects were not acknowledged as being at risk for AD when applying the 2012 NIA-AA guidelines. We suggest that to identify all subjects with cortical HPtau pathology and, consequently, probably being at risk for developing AD, in addition to the level of AD neuropathological change as recommended by the 2012 NIA-AA guidelines, assessment of HPtau IR NPs in the neocortex should be carried out.
Assuntos
Encéfalo/patologia , Placa Amiloide/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , National Institute on Aging (U.S.) , Tamanho do Órgão , Fosforilação , Placa Amiloide/metabolismo , Índice de Gravidade de Doença , Estados Unidos , Proteínas tau/metabolismoRESUMO
Alzheimer's disease (AD) is a devastating neurological disorder that affects synaptic transmission between neurons. Several theories and concepts have been postulated to explain its etiology and pathogenesis. The disease has no cure, and the drugs available to manage AD symptoms provide only modest benefits. It originates in the brain's entorhinal cortex (EC), with tau pathology that can proceed overt symptoms by decades and then spreads to other connected areas and networks to cause severe cognitive decline. Despite decades of research, the reason why the EC is the first region to be affected during AD pathophysiology remains unknown. The EC is well connected with surrounding areas to support the brain's structural and functional integrity, participating in navigation, working memory, memory consolidation, olfaction, and olfactory-auditory coordination. These actions require massive energy expenditure; thus, the EC is extremely vulnerable to severe hypometabolism and an energy crisis. Unfortunately, the crucial events/factors that make the EC vulnerable to pathological sequelae more than other brain regions have not been thoroughly explored. An in-depth analysis of available research on the role of the EC in AD could provide meaningful insights into the susceptibility of this region and its role in propagating AD. In this review article, we highlight how the functional complexities of the EC account for its vulnerability in AD.
RESUMO
Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.
Assuntos
Doença de Alzheimer , Encéfalo , Aprendizado Profundo , Emaranhados Neurofibrilares , Placa Amiloide , Software , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Humanos , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Idoso , Feminino , Processamento de Imagem Assistida por Computador/métodos , MasculinoRESUMO
Introduction: The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods: The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results: We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion: Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.
RESUMO
Extracellular deposits of amyloid-ß (Aß) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aß plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aß plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aß plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aß plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aß deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
RESUMO
BACKGROUND: Apolipoprotein E ε4 allele (APOE-ε4) is the main genetic risk factor for late-onset Alzheimer's disease (AD) and may impact cognitive function also via other neuropathological lesions. However, there is limited evidence available from diverse populations, as APOE associations with dementia seem to differ by race. Therefore, we aimed to evaluate the pathways linking APOE-ε4 to cognitive abilities through AD and non-AD neuropathology in an autopsy study with an admixed sample. METHODS: Neuropathological lesions were evaluated following international criteria using immunohistochemistry. Participants were classified into APOE-ε4 carriers (at least one ε4 allele) and non-carriers. Cognitive abilities were evaluated by the Clinical Dementia Rating Scale sum of boxes. Mediation analyses were conducted to assess the indirect association of APOE-ε4 with cognition through AD-pathology, lacunar infarcts, hyaline arteriosclerosis, cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), and TAR DNA-binding protein 43 (TDP-43). RESULTS: We included 648 participants (mean age 75 ± 12 years old, mean education 4.4 ± 3.7 years, 52% women, 69% White, and 28% APOE-ε4 carriers). The association between APOE-ε4 and cognitive abilities was mediated by neurofibrillary tangles (ß = 0.88, 95% CI = 0.45; 1.38, p < 0.001) and neuritic plaques (ß = 1.36, 95% CI = 0.86; 1.96, p < 0.001). Lacunar infarcts, hyaline arteriosclerosis, CAA, LBD, and TDP-43 were not mediators in the pathway from APOE-ε4 to cognition. CONCLUSION: The association between APOE-ε4 and cognitive abilities was partially mediated by AD-pathology. On the other hand, cerebrovascular lesions and other neurodegenerative diseases did not mediate the association between APOE-ε4 and cognition.
Assuntos
Doença de Alzheimer , Arteriosclerose , Angiopatia Amiloide Cerebral , Doença por Corpos de Lewy , Acidente Vascular Cerebral Lacunar , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Arteriosclerose/genética , Autopsia , Angiopatia Amiloide Cerebral/genética , Cognição , Proteínas de Ligação a DNA/genética , Genótipo , Doença por Corpos de Lewy/genética , Acidente Vascular Cerebral Lacunar/genéticaRESUMO
The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.
RESUMO
The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.
RESUMO
Objective: Alzheimer's disease (AD) is the most common neurodegenerative disease. The predominantly sporadic form of AD is age-related, but the underlying pathogenic mechanisms remain not fully understood. Current efforts to combat the disease focus on the main pathological hallmarks, in particular beta-amyloid (Aß) plaque pathology. According to the amyloid cascade hypothesis, Aß is the critical early initiator of AD pathogenesis. Plaque pathology is very heterogeneous, where a subset of plaques, neuritic plaques (NPs), are considered most neurotoxic rendering their in-depth characterization essential to understand Aß pathogenicity. Methods: To delineate the chemical traits specific to NP types, we investigated senile Aß pathology in the postmortem, human sporadic AD brain using advanced correlative biochemical imaging based on immunofluorescence (IF) microscopy and mass spectrometry imaging (MSI). Results: Immunostaining-guided MSI identified distinct Aß signatures of NPs characterized by increased Aß1-42(ox) and Aß2-42. Moreover, correlation with a marker of dystrophy (reticulon 3 [RTN3]) identified key Aß species that both delineate NPs and display association with neuritic dystrophy. Conclusion: Together, these correlative imaging data shed light on the complex biochemical architecture of NPs and associated dystrophic neurites. These in turn are obvious targets for disease-modifying treatment strategies, as well as novel biomarkers of Aß pathogenicity.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/patologia , Doenças Neurodegenerativas/patologia , Camundongos Transgênicos , Encéfalo/patologia , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismoRESUMO
Introduction Normal pressure hydrocephalus (NPH) has conventionally been treated by placement of a ventriculoperitoneal shunt. However, it can also be treated with a less invasive technique, an endoscopic third ventriculostomy (ETV). Unfortunately, there is a lack of evidence on the characteristics of NPH patients who are most likely to benefit from ETV. This study seeks to identify if patients at risk of dementia with NPH should be candidates for an ETV. Methodology Thirty-six NPH patients who underwent ETV at two institutions between July 2007 and December 2014 were pre-surgically assessed for various risk factors. At the time of ETV, a cortical biopsy was obtained and assessed for plaques consistent with dementia. Post-procedure, patients were followed and assessed for symptoms such as gait improvement, headache, memory problems, incontinence, and dementia. ETV success was defined as an improvement in gait. Results The mean age of patients with successful ETVs was 65.8 ± 6.0 versus 74.5 ± 7.0 for failed ETVs. Sixty-seven percent of patients with negative biopsies showed gait improvement by the final follow-up appointment as compared to only 33% of patients with positive biopsies (p>0.05). Younger age was correlated with successful ETV (p=.003). Memory disturbance (p<0.05) and incontinence (p<0.05) after surgery were both associated with a lack of gait improvement at the final follow-up. Conclusion Biopsy was not a significant predictor of ETV success; however, there was a correlation between younger age and ETV success. Additional studies are required to determine if there is a relationship between cortical biopsy findings and ETV success.
RESUMO
BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.
Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismoRESUMO
Accumulation of amyloid-beta (Aß) into amyloid plaques and hyperphosphorylated tau into neurofibrillary tangles (NFTs) are pathological hallmarks of Alzheimer's disease (AD). There is a significant intra- and inter-individual variability in the morphology and conformation of Aß aggregates, which may account in part for the extensive clinical and pathophysiological heterogeneity observed in AD. In this study, we sought to identify an array of fluorescent dyes to specifically probe Aß aggregates, in an effort to address their diversity. We screened a small library of fluorescent probes and identified three benzothiazole-coumarin derivatives that stained both vascular and parenchymal Aß deposits in AD brain sections. The set of these three dyes allowed the visualization of Aß deposits in three different colors (blue, green and far-red). Importantly, two of these dyes specifically stained Aß deposits with no apparent staining of hyperphosphorylated tau or α-synuclein deposits. Furthermore, this set of dyes demonstrated differential interactions with distinct types of Aß deposits present in the same subject. Aß aggregate-specific dyes identified in this study have the potential to be further developed into Aß imaging probes for the diagnosis of AD. In addition, the far-red dye we identified in this study may serve as an imaging probe for small animal imaging of Aß pathology. Finally, these dyes in combination may help us advance our understanding of the relation between the various Aß deposits and the clinical diversity observed in AD.