Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.241
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240740

RESUMO

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Assuntos
Movimento Celular , Glipicanas/química , Receptores de Netrina/química , Animais , Glipicanas/metabolismo , Humanos , Camundongos , Proteínas Mutantes , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/metabolismo , Anticorpos de Domínio Único , Trombospondinas
2.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703770

RESUMO

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Assuntos
Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Exossomos/metabolismo , Exossomos/genética , Íntrons , Ligação Proteica , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , RNA/metabolismo , RNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proliferação de Células
3.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847357

RESUMO

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Assuntos
Núcleo Celular/enzimologia , Proliferação de Células , Replicação do DNA , Exossomos/enzimologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/enzimologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células NIH 3T3 , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
4.
Mol Cell ; 82(23): 4564-4581.e11, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356584

RESUMO

How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Síndrome do Cromossomo X Frágil/genética
5.
Proc Natl Acad Sci U S A ; 121(1): e2315242121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154064

RESUMO

High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.


Assuntos
Neuroblastoma , Receptores Proteína Tirosina Quinases , Humanos , Camundongos , Animais , Quinase do Linfoma Anaplásico/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Reparo do DNA , Dano ao DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética
6.
EMBO J ; 40(3): e105784, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411331

RESUMO

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Regulação para Cima , Quinase do Linfoma Anaplásico/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análise de Sequência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905010

RESUMO

Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.


Assuntos
Crista Neural , Neuroblastoma , Biomarcadores , Diferenciação Celular , Criança , Pré-Escolar , Humanos , Células-Tronco Neoplásicas/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neurogênese
8.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611239

RESUMO

Analysis of the methylome of tumor cell-free deoxyribonucleic acid (DNA; cfDNA) has emerged as a powerful non-invasive technique for cancer subtyping and prognosis. However, its application is frequently hampered by the quality and total cfDNA yield. Here, we demonstrate the feasibility of very low-input cfDNA for whole-methylome and copy-number profiling studies using enzymatic conversion of unmethylated cysteines [enzymatic methyl-seq (EM-seq)] to better preserve DNA integrity. We created a model for predicting genomic subtyping and prognosis with high accuracy. We validated our tool by comparing whole-genome CpG sequencing with in situ cohorts generated with bisulfite conversion and array hybridization, demonstrating that, despite the different techniques and sample origins, information on cfDNA methylation is comparable with in situ cohorts. Our findings support use of liquid biopsy followed by EM-seq to assess methylome of cancer patients, enabling validation in external cohorts. This advance is particularly relevant for rare cancers like neuroblastomas where liquid-biopsy volume is restricted by ethical regulations in pediatric patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Criança , Epigenoma , Metilação de DNA , Genômica/métodos , Neoplasias/genética , DNA
9.
FASEB J ; 38(10): e23644, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738472

RESUMO

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Feminino , Humanos , Imunomodulação , Camundongos Endogâmicos C57BL
10.
EMBO Rep ; 24(2): e54977, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36416237

RESUMO

High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA , Neuroblastoma , Humanos , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
11.
J Pathol ; 264(1): 112-124, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049595

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by genomic integration of the Merkel cell polyomavirus (MCPyV). MCPyV-negative cases often present as combined MCCs, which represent a distinctive subset of tumors characterized by association of an MCC with a second tumor component, mostly squamous cell carcinoma. Up to now, only exceptional cases of combined MCC with neuroblastic differentiation have been reported. Herein we describe two additional combined MCCs with neuroblastic differentiation and provide comprehensive morphologic, immunohistochemical, transcriptomic, genetic and epigenetic characterization of these tumors, which both arose in elderly men and appeared as an isolated inguinal adenopathy. Microscopic examination revealed biphasic tumors combining a poorly differentiated high-grade carcinoma with a poorly differentiated neuroblastic component lacking signs of proliferation. Immunohistochemical investigation revealed keratin 20 and MCPyV T antigen (TA) in the MCC parts, while neuroblastic differentiation was confirmed in the other component in both cases. A clonal relation of the two components can be deduced from 20 and 14 shared acquired point mutations detected by whole exome analysis in both combined tumors, respectively. Spatial transcriptomics demonstrated a lower expression of stem cell marker genes such as SOX2 and MCM2 in the neuroblastic component. Interestingly, although the neuroblastic part lacked TA expression, the same genomic MCPyV integration and the same large T-truncating mutations were observed in both tumor parts. Given that neuronal transdifferentiation upon TA repression has been reported for MCC cell lines, the most likely scenario for the two combined MCC/neuroblastic tumors is that neuroblastic transdifferentiation resulted from loss of TA expression in a subset of MCC cells. Indeed, DNA methylation profiling suggests an MCC-typical cellular origin for the combined MCC/neuroblastomas. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Antígenos Virais de Tumores , Carcinoma de Célula de Merkel , Transdiferenciação Celular , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/patologia , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/metabolismo , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Poliomavírus das Células de Merkel/genética , Pontos de Checagem do Ciclo Celular/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Idoso de 80 Anos ou mais , Idoso , Neoplasias Complexas Mistas/patologia , Neoplasias Complexas Mistas/genética , Neoplasias Complexas Mistas/metabolismo , Neuroblastoma/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo
12.
Mol Cell ; 65(3): 554-564.e6, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111014

RESUMO

Modification of CG dinucleotides in DNA is part of epigenetic regulation of gene function in vertebrates and is associated with complex human disease. Bisulfite sequencing permits high-resolution analysis of cytosine modification in mammalian genomes; however, its utility is often limited due to substantial cost. Here, we describe an alternative epigenome profiling approach, named TOP-seq, which is based on covalent tagging of individual unmodified CG sites followed by non-homologous priming of the DNA polymerase action at these sites to directly produce adjoining regions for their sequencing and precise genomic mapping. Pilot TOP-seq analyses of bacterial and human genomes showed a better agreement of TOP-seq with published bisulfite sequencing maps as compared to widely used MBD-seq and MRE-seq and permitted identification of long-range and gene-level differential methylation among human tissues and neuroblastoma cell types. Altogether, we propose an affordable single CG-resolution technique well suited for large-scale epigenome studies.


Assuntos
Primers do DNA/metabolismo , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Humanos
13.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157508

RESUMO

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética
14.
Mol Cell Proteomics ; 22(3): 100504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708875

RESUMO

MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC-MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.


Assuntos
Lisina , Neuroblastoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Lisina/metabolismo , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estabilidade Proteica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
15.
Proc Natl Acad Sci U S A ; 119(49): e2208904119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445966

RESUMO

The protooncoprotein N-Myc, which is overexpressed in approximately 25% of neuroblastomas as the consequence of MYCN gene amplification, has long been postulated to regulate DNA double-strand break (DSB) repair in neuroblastoma cells, but experimental evidence of this function is presently scant. Here, we show that N-Myc transcriptionally activates the long noncoding RNA MILIP to promote nonhomologous end-joining (NHEJ) DNA repair through facilitating Ku70-Ku80 heterodimerization in neuroblastoma cells. High MILIP expression was associated with poor outcome and appeared as an independent prognostic factor in neuroblastoma patients. Knockdown of MILIP reduced neuroblastoma cell viability through the induction of apoptosis and inhibition of proliferation, retarded neuroblastoma xenograft growth, and sensitized neuroblastoma cells to DNA-damaging therapeutics. The effect of MILIP knockdown was associated with the accumulation of DNA DSBs in neuroblastoma cells largely due to decreased activity of the NHEJ DNA repair pathway. Mechanistical investigations revealed that binding of MILIP to Ku70 and Ku80 increased their heterodimerization, and this was required for MILIP-mediated promotion of NHEJ DNA repair. Disrupting the interaction between MILIP and Ku70 or Ku80 increased DNA DSBs and reduced cell viability with therapeutic potential revealed where targeting MILIP using Gapmers cooperated with the DNA-damaging drug cisplatin to inhibit neuroblastoma growth in vivo. Collectively, our findings identify MILIP as an N-Myc downstream effector critical for activation of the NHEJ DNA repair pathway in neuroblastoma cells, with practical implications of MILIP targeting, alone and in combination with DNA-damaging therapeutics, for neuroblastoma treatment.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Neuroblastoma , RNA Longo não Codificante , Humanos , DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , RNA Longo não Codificante/genética
16.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
17.
Genes Dev ; 31(10): 1036-1053, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28637693

RESUMO

We recently identified pathogenic KIF1Bß mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bß in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bß is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bß mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bß-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bß. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bß independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bß loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bß mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.


Assuntos
Diferenciação Celular/genética , Cinesinas/genética , Cinesinas/metabolismo , Neuroblastoma/genética , Neurônios/citologia , Receptor trkA/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Mutação , Neuroblastoma/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Células PC12 , Ratos , Transdução de Sinais/genética , Sistema Nervoso Simpático/citologia , Proteínas ras/genética
18.
Genes Chromosomes Cancer ; 63(7): e23260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031441

RESUMO

Neuroblastoma (NB) is a heterogeneous childhood cancer with a slightly higher incidence in boys than girls, with the reason for this gender disparity unknown. Given the growing evidence for the involvement of loss of the Y chromosome (LoY) in male diseases including cancer, we investigated Y chromosome status in NB. Male NB tumor samples from a Swedish cohort, analyzed using Cytoscan HD SNP-microarray, were selected. Seventy NB tumors were analyzed for aneuploidy of the Y chromosome, and these data were correlated with other genetic, biological, and clinical parameters. LoY was found in 21% of the male NB tumors and it was almost exclusively found in those with high-risk genomic profiles. Furthermore, LoY was associated with increased age at diagnosis and enriched in tumors with 11q-deletion and activated telomere maintenance mechanisms. In contrast, tumors with an MYCN-amplified genomic profile retained their Y chromosome. The understanding of LoY in cancer is limited, making it difficult to conclude whether LoY is a driving event in NB or function of increased genomic instability. Gene expression analysis of Y chromosome genes in male NB tumors showed low expression of certain genes correlating with worse overall survival. KDM5D, encoding a histone demethylase stands out as an interesting candidate for further studies. LoY has been shown to impact the epigenomic layer of autosomal loci in nonreproductive tissues, and KDM5D has been reported as downregulated and/or associated with poor survival in different malignancies. Further studies are needed to explore the mechanisms and functional consequences of LoY in NB.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 11 , Cromossomos Humanos Y , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Masculino , Cromossomos Humanos Y/genética , Cromossomos Humanos Par 11/genética , Lactente , Pré-Escolar , Feminino , Homeostase do Telômero/genética , Criança , Histona Desmetilases/genética , Telômero/genética , Proteína Proto-Oncogênica N-Myc/genética , Suécia/epidemiologia
19.
Traffic ; 23(7): 391-410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604355

RESUMO

Alpha-synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.


Assuntos
Neuroblastoma , Sinucleinopatias , alfa-Sinucleína/metabolismo , Actinas , Clatrina/metabolismo , Humanos , Neurônios/metabolismo , alfa-Sinucleína/química
20.
J Proteome Res ; 23(1): 301-315, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064546

RESUMO

Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.


Assuntos
Multiômica , Neuroblastoma , Humanos , Apoptose , Fosfoproteínas , Serina , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa