Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256166

RESUMO

Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata , Organoides , Epigenômica , Microambiente Tumoral
2.
Eur J Nucl Med Mol Imaging ; 50(11): 3452-3464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278941

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) is a superior method to predict patients' risk of cancer progression and response to specific therapies. However, its performance is limited for neuroendocrine prostate cancer (NEPC) and PSMA-low prostate cancer cells, resulting in diagnostic blind spots. Hence, identifying novel specific targets is our aim for diagnosing those prostate cancers with low PSMA expression. METHODS: The Cancer Genome Atlas (TCGA) database and our cohorts from men with biopsy-proven high-risk metastatic prostate cancer were used to identify CDK19 and PSMA expression. PDX lines neP-09 and P-16 primary cells were used for cellular uptake and imaging mass cytometry in vitro. To evaluate in vivo CDK19-specific uptake of gallium(Ga)-68-IRM-015-DOTA, xenograft mice models and blocking assays were used. PET/CT imaging data were obtained to estimate the absorbed dose in organs. RESULTS: Our study group had reported the overexpression of a novel tissue-specific gene CDK19 in high-risk metastatic prostate cancer and CDK19 expression correlated with metastatic status and tumor staging, independently with PSMA and PSA levels. Following up on this new candidate for use in diagnostics, small molecules targeting CDK19 labeled with Ga-68 (68Ga-IRM-015-DOTA) were used for PET in this study. We found that the 68Ga-IRM-015-DOTA was specificity for prostate cancer cells, but the other cancer cells also took up little 68Ga-IRM-015-DOTA. Importantly, mouse imaging data showed that the NEPC and CRPC xenografts exhibited similar signal strength with 68Ga-IRM-015-DOTA, but 68Ga-PSMA-11 only stained the CRPC xenografts. Furthermore, target specificity was elucidated by a blocking experiment on a CDK19-bearing tumor xenograft. These data concluded that 68Ga-CDK19 PET/CT was an effective technology to detect lesions with or without PSMA in vitro, in vivo, and in the PDX model. CONCLUSION: Thus, we have generated a novel PET small molecule with predictive value for prostate cancer. The findings indicate that 68Ga-CDK19 may merit further evaluation as a predictive biomarker for PET scans in prospective cohorts and may facilitate the identification of molecular types of prostate cancer independent of PSMA.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Prospectivos , Neoplasias da Próstata/patologia , Tomografia por Emissão de Pósitrons , Quinases Ciclina-Dependentes
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884893

RESUMO

Neuroendocrine prostate cancer (NEPC) is an aggressive and lethal variant of prostate cancer (PCa), and it remains a diagnostic challenge. Herein we report our findings of using synaptic vesicle glycoprotein 2 isoform A (SV2A) as a promising marker for positron emission tomography (PET) imaging of neuroendocrine differentiation (NED). The bioinformatic analyses revealed an amplified SV2A gene expression in clinical samples of NEPC versus castration-resistant PCa with adenocarcinoma characteristics (CRPC-Adeno). Importantly, significantly upregulated SV2A protein levels were found in both NEPC cell lines and tumor tissues. PET imaging studies were carried out in NEPC xenograft models with 18F-SynVesT-1. Although 18F-SynVesT-1 is not a cancer imaging agent, it showed a significant uptake level in the SV2A+ tumor (NCI-H660: 0.70 ± 0.14 %ID/g at 50-60 min p.i.). The SV2A blockade resulted in a significant reduction of tumor uptake (0.25 ± 0.03 %ID/g, p = 0.025), indicating the desired SV2A imaging specificity. Moreover, the comparative PET imaging study showed that the DU145 tumors could be clearly visualized by 18F-SynVesT-1 but not 68Ga-PSMA-11 nor 68Ga-DOTATATE, further validating the role of SV2A-targeted imaging for noninvasive assessment of NED in PCa. In conclusion, we demonstrated that SV2A, highly expressed in NEPC, can serve as a promising target for noninvasive imaging evaluation of NED.


Assuntos
Carcinoma Neuroendócrino/diagnóstico por imagem , Glicoproteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Compostos Organometálicos , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Ann Oncol ; 31(4): 470-479, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139297

RESUMO

Prostate cancer is the most common cancer and second leading cause of cancer-related death in American men. Antiandrogen therapies are part of the standard of therapeutic regimen for advanced or metastatic prostate cancers; however, patients who receive these treatments are more likely to develop castration-resistant prostate cancer (CRPC) or neuroendocrine prostate cancer (NEPC). In the development of CRPC or NEPC, numerous genetic signaling pathways have been under preclinical investigations and in clinical trials. Accumulated evidence shows that DNA methylation, chromatin integrity, and accessibility for transcriptional regulation still play key roles in prostate cancer initiation and progression. Better understanding of how epigenetic change regulates the progression of prostate cancer and the interaction between epigenetic and genetic modulators driving NEPC may help develop a better risk stratification and more effective treatment regimens for prostate cancer patients.


Assuntos
Carcinoma Neuroendócrino , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Progressão da Doença , Epigênese Genética , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética
5.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626088

RESUMO

Localized prostate cancer (PCa) is often curable, whereas metastatic disease treated by castration inevitably progresses toward castration-resistant PCa (CRPC). Most CRPC treatments target androgen receptor (AR) signaling. However, not all CRPC cells rely on AR activity for survival and proliferation. With advances in immunotherapy and fluid biopsies for cancer management, expression systems specific for both AR-positive and -negative PCa are required for virus-based vaccines and cell imaging. To target both AR-responsive and non-responsive cells, we developed a three-step transcriptional amplification (3STA) system based on the progression elevated gene-3 (PEG3) promoter named PEG3AP1-3STA. Notably, we report on different genetic modifications that significantly improved PEG3 promoter's strength in PCa cells. Adenoviruses incorporating PEG3 promoter with and without transcriptional amplification systems were generated. The potential of PEG3AP1-3STA to target PCa cells was then evaluated in vitro and in vivo in androgen-responsive and non-responsive PCa cell lines. PEG3AP1-3STA was shown to be active in all PCa cell lines and not regulated by androgens, and its activity was amplified 97-fold compared to that of a non-amplified promoter. The PEG3AP1-3STA system can thus be used to target advanced AR+ and AR- cells for imaging or immunovirotherapy in advanced PCa.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica , Adenocarcinoma/genética , Androgênios , Animais , Linhagem Celular Tumoral , Humanos , Medições Luminescentes , Masculino , Células Neuroendócrinas/metabolismo , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ratos
6.
Am J Cancer Res ; 14(5): 2103-2123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859837

RESUMO

The lncRNA tumor protein translationally controlled 1-antisense RNA 1 (TPT1-AS1) is known for its oncogenic role in various cancers, but its impact on the pathological progression of prostate cancer remains unclear. Our previous study demonstrated that the RE1-silencing transcription factor (REST) regulates neuroendocrine differentiation (NED) in prostate cancer (PCA) by derepressing specific long non-coding RNAs (lncRNAs), including TPT1-AS1. In this study, we revealed that TPT1-AS1 is overexpressed in LNCaP and C4-2B cells after IL-6 and enzalutamide treatment. By analyzing The Cancer Genome Atlas (TCGA) prostate adenocarcinoma dataset, we detected upregulated TPT1-AS1 expression in neuroendocrine-associated PCA but not in prostate adenocarcinoma. Single-cell RNA sequencing data further confirmed the increased TPT1-AS1 levels in neuroendocrine prostate cancer (NEPC) cells. Surprisingly, functional experiments indicated that TPT1-AS1 overexpression had no stimulatory effect on NED in LNCaP cells and that TPT1-AS1 knockdown did not inhibit IL-6-induced NED. Transcriptomic analysis revealed the essential role of TPT1-AS1 in synaptogenesis and autophagy activation in neuroendocrine differentiated PCA cells induced by IL-6 and enzalutamide treatment. TPT1-AS1 was found to regulate the expression of autophagy-related genes that maintain neuroendocrine cell survival through autophagy activation. In conclusion, our data expand the current knowledge of REST-repressed lncRNAs in NED in PCA and highlight the contribution of TPT1-AS1 to protect neuroendocrine cells from cell death rather than inducing NED. Our study suggested that TPT1-AS1 plays a cytoprotective role in NEPC cells; thus, targeting TPT1-AS1 is a potential therapeutic strategy.

7.
Transl Androl Urol ; 13(5): 868-878, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38855597

RESUMO

Background: Small cell neuroendocrine prostate cancer (SCNC) is a rare aggressive type of neuroendocrine prostate cancer (NEPC) characterized by aggressive clinical course and lack of response to hormone therapy. Case Description: We present a case report of a 60-year-old man diagnosed with a histologically confirmed primary metastatic (bone, lymph nodes and visceral) SCNC with small components of an adenocarcinoma with clinical symptoms mimicking an acute prostatitis. Of note, serum based neuroendocrine markers (carcinoembryonic antigen, chromogranin A) were negative and the patient had a prostate-specific antigen (PSA) elevation. Genetic testing of tumor tissue revealed breast cancer gene 2 (BRCA2) copy number loss and a retinoblastoma gene (RB1) mutation reflecting again the aggressiveness of the disease. Germline testing for the BRCA2 copy number loss was unremarkable. After 6 cycles of carboplatin and etoposide in combination with androgen deprivation therapy (ADT) the Eastern Cooperative Oncology Group (ECOG) performance status has improved from 3 to 0, in addition the patient was free of pain. In line with clinical improvement, both prostate-specific membrane antigen (PSMA) and fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) revealed a significant reduction of metastatic load. Currently, the patient is treated with ADT plus apalutamide. Conclusions: We demonstrate for the first time a case of a primary metastatic SCNC with adenocarcinoma components successfully treated by the combination of platinum-based chemotherapy plus hormonal therapy. In addition, we provide a literature overview on management of SCNC as there is no standard treatment established for this disease.

8.
Am J Cancer Res ; 13(9): 3983-4002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818052

RESUMO

The association between REST reduction and the development of neuroendocrine prostate cancer (NEPC), a novel drug-resistant and lethal variant of castration-resistant prostate cancer (CRPC), is well established. To better understand the mechanisms underlying this process, we aimed to identify REST-repressed long noncoding RNAs (lncRNAs) that promote neuroendocrine differentiation (NED), thus facilitating targeted therapy-induced resistance. In this study, we used data from REST knockdown RNA sequencing combined with siRNA screening to determine that LINC01801 was upregulated and played a crucial role in NED in prostate cancer (PCa). Using The Cancer Genome Atlas (TCGA) prostate adenocarcinoma database and CRPC samples collected in our laboratory, we demonstrated that LINC01801 expression is upregulated in NEPC. Functional experiments revealed that overexpression of LINC01801 had a slight stimulatory effect on the NED of LNCaP cells, while downregulation of LINC01801 significantly inhibited the induction of NED. Mechanistically, LINC01801 is transcriptionally repressed by REST, and transcriptomic analysis revealed that LINC01801 preferentially affects the autophagy pathway. LINC01801 was found to function as a competing endogenous RNA (ceRNA) to regulate the expression of autophagy-related genes by sponging hsa-miR-6889-3p in prostate cancer cells. In conclusion, our data expand the current knowledge of REST-induced NED and highlight the contribution of the REST-LINC01801-hsa-miR-6889-3p axis to autophagic induction, which may provide promising avenues for therapeutic opportunities.

9.
Curr Protoc ; 3(5): e742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37166213

RESUMO

Prostate cancer (PCa) is the most common malignancy and the second leading cause of cancer-related death amongst men in the United States. Neuroendocrine prostate cancer (NEPC) can either arise de novo or emerge as a consequence of therapy. De novo NEPC is rare, with an incidence of <2% of all PCa cases. In contrast, treatment-induced NEPC is frequent with >20% of patients with metastatic castration-resistant prostate cancer (CRPC) reported to progress to neuroendocrine (NE) differentiation. The emergence of treatment-induced NEPC is linked to the increased therapeutic pressure, due to the broad application of androgen deprivation therapy (ADT) for PCa management and the development of novel more potent androgen receptor (AR) pathway inhibitors. NEPC is a high-grade tumor type characterized by aggressive phenotype and clinical behavior. Patients affected by NEPC frequently develop visceral metastases and have a poor prognosis. The molecular mechanisms underlying the development and progression of NEPC are still poorly understood. Transcriptional and epigenetic reprogramming appears to be involved in NE progression. In this review, we aim to provide a comprehensive view of the available models for NEPC detailing their strengths and limitations. Moreover, we describe novel approaches to expand the repertoire of preclinical models to better study, prevent, or reverse NEPC. The integration of multiple preclinical models along with molecular and omics approaches will provide important insights to understand disease progression and to devise novel therapeutic strategies for the management of NEPC in the near future. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of organoids starting from the prostate gland of a GEMM or a human PDX Basic Protocol 2: Ex vivo tumor sphere formation.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/uso terapêutico , Próstata/metabolismo , Próstata/patologia , Antagonistas de Receptores de Andrógenos/uso terapêutico
10.
Transl Androl Urol ; 12(1): 128-138, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36760876

RESUMO

Background: The amount of treatment-related neuroendocrine prostate cancer (t-NEPC) increases after hormonal therapy, especially novel androgen receptor pathway inhibitors (ARPIs). T-NEPC is considered a hormone refractory [androgen receptor (AR)-negative] subtype of prostate cancer. Although tumors are initially responsive to platinum-based chemotherapy, the drugs are only effective for a short time. Therefore, whether or not local treatment can prolong survival is of great concern. Case Description: In this case series, we discuss 4 t-NEPC cases who were treated with partial stereotactic ablative radiotherapy (P-SABR) for bulky tumors. P-SABR is a radiotherapy regimen that is used in a SABR boost [such as 6 Gy × 4 fractions (f), 8 Gy × 3 f] prior to conventional radiotherapy to enhance the tumor biological effective dose (BED) without increasing the dose to organs at risk. All patients achieved good local control after P-SABR. For patient 1, P-SABR was used for the prostate tumor. After radiotherapy, pathological complete remission (pCR) was achieved, and the prostate lesion remained stable thus far. As of this writing, the patient has been in remission for 3 years after initial t-NEPC diagnosis. Conclusions: We describe 4 cases and indicate that P-SABR is safe and effective in the treatment of a large prostate mass and may prolong the survival of these patients.

11.
Redox Biol ; 62: 102686, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963289

RESUMO

Conventional treatment of prostate cancer (PCa) uses androgen-deprivation therapy (ADT) to inhibit androgen receptor (AR) signaling-driven tumor progression. ADT-induced PCa recurrence may progress to an AR-negative phenotype with neuroendocrine (NE) histologic features, which are associated with metabolic disturbances and poor prognoses. However, the metabolic pathways that regulate NE differentiation (NED) in PCa remain unclear. Herein, we show a regulatory mechanism in NED-associated metabolism dysfunction induced by ADT, whereby overexpression of pyruvate kinase L/R (PKLR) mediates oxidative stress through upregulation of reactive oxygen species modulator 1 (ROMO1), thereby promoting NED and aggressiveness. ADT mediates the nuclear translocation of PKLR, which binds to the MYCN/MAX complex to upregulate ROMO1 and NE-related genes, leading to altered mitochondrial function and NED of PCa. Targeting nuclear PKLR/MYCN using bromodomain and extra-terminal motif (BET) inhibitors has the potential to reduce PKLR/MYCN-driven NED. Abundant ROMO1 in serum samples may provide prognostic information in patients with ADT. Our results suggest that ADT resistance leads to upregulation of PKLR/MYCN/ROMO1 signaling, which may drive metabolic reprogramming and NED in PCa. We further show that increased abundance of serum ROMO1 may be associated with the development of NE-like PCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Proteínas de Membrana , Proteínas Mitocondriais/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Piruvato Quinase/metabolismo , Transdução de Sinais
12.
Front Endocrinol (Lausanne) ; 14: 1093332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065756

RESUMO

Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.


Assuntos
Tumores Neuroendócrinos , Neoplasias da Próstata , Humanos , Masculino , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia
13.
Front Endocrinol (Lausanne) ; 13: 926585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909568

RESUMO

The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Carcinoma Neuroendócrino/patologia , Epigênese Genética , Humanos , Masculino , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
14.
Front Cell Dev Biol ; 10: 955669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938167

RESUMO

The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.

15.
Cells ; 11(12)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741020

RESUMO

Despite early studies linking calcium-calmodulin protein kinase kinase 2 (CAMKK2) to prostate cancer cell migration and invasion, the role of CAMKK2 in metastasis in vivo remains unclear. Moreover, while CAMKK2 is known to regulate systemic metabolism, whether CAMKK2's effects on whole-body metabolism would impact prostate cancer progression and/or related comorbidities is not known. Here, we demonstrate that germline ablation of Camkk2 slows, but does not stop, primary prostate tumorigenesis in the TRansgenic Adenocarcinoma Mouse Prostate (TRAMP) genetic mouse model. Consistent with prior epidemiological reports supporting a link between obesity and prostate cancer aggressiveness, TRAMP mice fed a high-fat diet exhibited a pronounced increase in the colonization of lung metastases. We demonstrated that this effect on the metastatic spread was dependent on CAMKK2. Notably, diet-induced lung metastases exhibited a highly aggressive neuroendocrine phenotype. Concurrently, Camkk2 deletion improved insulin sensitivity in the same mice. Histological analyses revealed that cancer cells were smaller in the TRAMP;Camkk2-/- mice compared to TRAMP;Camkk2+/+ controls. Given the differences in circulating insulin levels, a known regulator of cell growth, we hypothesized that systemic CAMKK2 could promote prostate cancer cell growth and disease progression in part through cancer cell-extrinsic mechanisms. Accordingly, host deletion of Camkk2 impaired the growth of syngeneic murine prostate tumors in vivo, confirming nonautonomous roles for CAMKK2 in prostate cancer. Cancer cell size and mTOR signaling was diminished in tumors propagated in Camkk2-null mice. Together, these data indicate that, in addition to cancer cell-intrinsic roles, CAMKK2 mediates prostate cancer progression via tumor-extrinsic mechanisms. Further, we propose that CAMKK2 inhibition may also help combat common metabolic comorbidities in men with advanced prostate cancer.


Assuntos
Adenocarcinoma , Resistência à Insulina , Neoplasias Pulmonares , Neoplasias da Próstata , Adenocarcinoma/patologia , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias da Próstata/patologia , Proteínas Quinases
16.
Front Oncol ; 12: 937713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936689

RESUMO

The development of a neuroendocrine phenotype as a mechanism of resistance to hormonal treatment is observed in up to 20% of advanced prostate cancer patients. High grade neuroendocrine prostate cancer (NEPC) is associated to poor prognosis and the therapeutic armamentarium is restricted to platinum-based chemotherapy. Prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET)/computed tomography (CT) imaging has recently emerged as a potential new standard for the staging of prostate cancer and PSMA-based radioligand therapy (RLT) as a therapeutic option in advanced metastatic castration resistant prostate cancer (mCRPC). PSMA-based theranostic is not currently applied in the staging and treatment of NEPC since PSMA expression on neuroendocrine differentiated cells was shown to be lost. In this case series, we present 3 consecutive mCRPC patients with histologically proven high grade neuroendocrine differentiation who underwent PSMA-PET/CT and surprisingly showed high tracer uptake. This observation stimulates further research on the use of PSMA-based theranostic in the management of NEPC.

17.
Comput Struct Biotechnol J ; 20: 5873-5885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382181

RESUMO

Metastatic and locally advanced prostate cancer is treated by pharmacological targeting of androgen synthesis and androgen response via androgen signaling inhibitors (ASI), most of which target the androgen receptor (AR). However, ASI therapy invariably fails after 1-2 years. Emerging clinical evidence indicates that in response to ASI therapy, the AR-positive prostatic adenocarcinoma can transdifferentiate into AR-negative neuroendocrine prostate cancer (NEPC) in 17-25 % treated patients, likely through a process called neuroendocrine differentiation (NED). Despite high clinical incidence, the epigenetic pathways underlying NED and ASI therapy-induced NED remain unclear. By utilizing a combinatorial single cell and bulk mRNA sequencing workflow, we demonstrate in a time-resolved manner that following AR inhibition with enzalutamide, prostate cancer cells exhibit immediate loss of canonical AR signaling activity and simultaneous morphological change from epithelial to NE-like (NEL) morphology, followed by activation of specific neuroendocrine (NE)-associated transcriptional programs. Additionally, we observed that activation of NE-associated pathways occurs prior to complete repression of epithelial or canonical AR pathways, a phenomenon also observed clinically via heterogenous AR status in clinical samples. Our model indicates that, mechanistically, ASI therapy induces NED with initial morphological change followed by deactivation of canonical AR target genes and subsequent de-repression of NE-associated target genes, while retaining AR expression and transcriptional shift towards non-canonical AR activity. Coupled with scRNA-seq and CUT&RUN analysis, our model system can provide a platform for screening of potential therapeutic agents that may prevent ASI-induced NED or reverse the NED process.

18.
Pathol Oncol Res ; 27: 1609968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646089

RESUMO

Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy. Methods: Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset. Results: A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively. Conclusion: The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.


Assuntos
Biomarcadores Tumorais/genética , Tumores Neuroendócrinos/genética , Neoplasias de Próstata Resistentes à Castração/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/patologia , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Transcriptoma/genética
19.
Transl Androl Urol ; 10(10): 3953-3962, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34804838

RESUMO

With wide availability of potent androgen receptor targeted agents (ARTAs), the incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) has been dramatically increasing. However, there is no standard effective treatment for this disease state. Recent advances in genomic and molecular medicine have identified some critical features of NEPC that would help in understanding the biology of the disease. Furthermore, invaluable pre-clinical in vivo and in vitro research models that represent NEPC have been developed. These advances in research have revealed a large heterogeneity of t-NEPC with varying degree of androgen receptor (AR), neuroendocrine (NE) marker, and cell cycle associated gene expressions, which may have clinical implication in terms of prognosis and treatment selection. Based on these studies, some potential drug targets have been identified, and early clinical trials are ongoing. In the future, more precise disease classification and biomarker-driven selection of patients will be critical for optimization of treatment for patients with NEPC. In the present review, we describe up-to-date findings of recent research on this topic and introduce ongoing therapeutic developments that are expected to lead to novel treatment strategies for NEPC in the future.

20.
Cancer Lett ; 440-441: 35-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312731

RESUMO

Androgen receptor (AR) targeting is an important therapeutic strategy for treating prostate cancer. Most tumors progress to castration-resistant prostate cancer (CRPC) and develop the neuroendocrine (NE) phenotype under androgen deprivation therapy (ADT). The molecular basis for NE transdifferentiation after ADT remains incompletely understood. Herein, we show that an immunocyte expression protein, ZBTB46, induces inflammatory response gene expression and contributes to NE differentiation of prostate cancer cells. We demonstrated a molecular mechanism whereby ZBTB46 can be regulated by the androgen-responsive gene, SPDEF, and is associated with NE prostate cancer (NEPC) differentiation. In addition, ZBTB46 acts as a transcriptional coactivator that binds to the promoter of prostaglandin-endoperoxide synthase 1 (PTGS1) and transcriptionally regulated PTGS1 levels. Overexpression of ZBTB46 decreases the sensitivity of the combination of enzalutamide and a PTGS1 inhibitor; however, knockdown of ZBTB46 sensitizes the PTGS1 inhibitor and reduces tumor malignancy. ZBTB46 is inversely correlated with SPDEF and is increased in higher tumor grades and small-cell NE prostate cancer (SCNC) patients, which are positively associated with PTGS1. Our findings suggest that the induction of ZBTB46 results in increased PTGS1 expression, which is associated with NEPC progression and linked to the dysregulation of the AR-SPDEF pathway.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Tumores Neuroendócrinos/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa