Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
2.
Biochim Biophys Acta ; 1859(2): 269-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603102

RESUMO

BACKGROUND: Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. There are currently no effective FDA-approved treatments for NPC, although in the last years the inhibition of histone deacetylases (HDACs) has emerged as a potential treatment for this disease. However, the molecular mechanisms that deregulate HDAC activity in NPC disease are unknown. Previously our group had shown that the proapoptotic tyrosine kinase c-Abl signaling is activated in NPC neurons. Here, we demonstrate that c-Abl activity increases HDAC2 levels inducing neuronal gene repression of key synaptic genes in NPC models. RESULTS: Our data show that: i) HDAC2 levels and activity are increased in NPC neuronal models and in Npc1(-/-) mice; ii) inhibition of c-Abl or c-Abl deficiency prevents the increase of HDAC2 protein levels and activity in NPC neuronal models; iii) c-Abl inhibition decreases the levels of HDAC2 tyrosine phosphorylation; iv) treatment with methyl-ß-cyclodextrin and vitamin E decreases the activation of the c-Abl/HDAC2 pathway in NPC neurons; v) in vivo treatment with two c-Abl inhibitors prevents the increase of HDAC2 protein levels in the brain of Npc1(-/-) mice; and vi) c-Abl inhibition prevents HDAC2 recruitment to the promoter of neuronal genes, triggering an increase in their expression. CONCLUSION: Our data show the involvement of the c-Abl/HDAC2 signaling pathway in the regulation of neuronal gene expression in NPC neuronal models. Thus, inhibition of c-Abl could be a pharmacological target for preventing the deleterious effects of increased HDAC2 levels in NPC disease.


Assuntos
Histona Desacetilase 2/genética , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/genética , Proteínas Proto-Oncogênicas c-abl/genética , Animais , Colesterol/genética , Colesterol/metabolismo , Ciclodextrinas/administração & dosagem , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/biossíntese , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/patologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , Proteínas Proto-Oncogênicas c-abl/biossíntese , Transdução de Sinais/efeitos dos fármacos , Vitamina E/administração & dosagem
3.
Genome Biol ; 25(1): 162, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902825

RESUMO

BACKGROUND: The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS: We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS: Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.


Assuntos
Processamento Alternativo , Regulação para Baixo , Neurônios , Degradação do RNAm Mediada por Códon sem Sentido , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Animais , Camundongos , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Neurogênese/genética
4.
J Nutr Biochem ; 101: 108928, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936921

RESUMO

Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.


Assuntos
Variação Genética , Hipotálamo/fisiopatologia , Inflamação , Obesidade/genética , Obesidade/fisiopatologia , Saciação , Animais , Regulação do Apetite , Encéfalo/fisiologia , Predisposição Genética para Doença , Humanos , Inflamação/genética , Herança Multifatorial , Transdução de Sinais
5.
Adv Protein Chem Struct Biol ; 132: 89-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088080

RESUMO

The Neuronal Ceroid Lipofuscinoses (NCL) are a group of progressive neurodegenerative disorders, associated with 14 Ceroid Lipofuscinosis Neuronal genes (CLN1-14). The mutations in the Palmitoyl-Protein Thioesterase 1 (PPT1) protein serve as one of the major reasons for the causative of NCL. The PPT1 involves degrading and modifying cysteine residues in proteins or peptides by removing thioester-linked fatty acyl groups like palmitate prefers acyl chains of 14-18 carbons in length. In this study, we have analyzed the impact of PPT1 mutations on the deleteriousness, stability, conservative nature of amino acid, and impact of mutations on the protein structure. We have also used molecular dynamics simulations using GROMACS to perceive the alteration in the dynamic behavior of the PPT1 at the residual level. In this study, we have retrieved 23 PPT1 mutations from the UniProt database, and these were subjected to a series of analyses using varied computer algorithms. From these analyses, out of 23 mutations, 16 mutations were identified as deleterious. Among 16, eight mutations were identified to destabilize the protein structure, and finally, two mutations (W38C and L222P) were found to be positioned in the highly conserved region. The structural impact study observed that the mutant proline could disrupt the alpha helix formed by the leucine at position 222. Finally, from the molecular dynamics simulations, we observed that due to the mutations (W38C and L222P), the protein had experienced higher deviation, fluctuation, and lower compactness. These structural changes elucidate that these mutations can impact the structure and function of the PPT1 protein.


Assuntos
Lipofuscinoses Ceroides Neuronais , Tioléster Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
6.
Regen Med ; 12(4): 377-396, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28621170

RESUMO

AIM: In this study, we have evaluated the therapeutic efficacy of mouse multipotent adult progenitor cells (mMAPCs) in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, and compared it with mouse mesenchymal stem cells (mMSCs). MATERIALS & METHODS: We administered PKH26-labeled mMAPC and mMSC into EAE mice and evaluated their therapeutic efficacy. RESULTS: The mMAPC-treated mice in comparison with the mMSC group exhibited a higher suppression of EAE (p < 0.05), and a higher fold expression of neuronal genes GAP43, NG2, PDGFR, Nestin, SMI 32, BDNF and NT 3 in spinal cord (p < 0.05), suggesting a better neuroprotective and regenerative potential of mMAPC than mMSC. CONCLUSION: MAPC may be a potential cell type, which is superior to mesenchymal stem cell for the treatment of EAE/multiple sclerosis.


Assuntos
Células-Tronco Adultas/transplante , Encefalomielite Autoimune Experimental/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/transplante , Células-Tronco Adultas/citologia , Animais , Apoptose , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Humanos , Mediadores da Inflamação/metabolismo , Linfócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/citologia , Neurônios/patologia , Neuroproteção , Resultado do Tratamento
7.
Oncotarget ; 6(16): 13922-32, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26015403

RESUMO

With ever-increasing elder population, the high incidence of age-related diseases such as neurodegenerative disorders has turned out to be a huge public concern. Especially the elders and their families dreadfully suffer from the learning, behavioral and cognitive impairments. The lack of effective therapies for such a horrible symptom makes a great demanding for biological mechanism study for cognitive aging. Epigenetics is an emerging field that broadens the dimensions of mammalian genome blueprint. It is, unlike genetics, not only inheritable but also reversible. Recent studies suggest that DNA methylation, one of major epigenetic mechanisms, plays a pivotal role in the pathogenesis of age-related neurodegenerations and cognitive defects. In this review, the evolving knowledge of age-related cognitive functions and the potential DNA methylation mechanism of cognitive aging are discussed. That indicates the impairment of DNA methylation may be a crucial but reversible mechanism of behavioral and cognitive related neurodegeneration. The methods to examine the dynamics of DNA methylation patterns at tissue and single cell level and at the representative scale as well as the whole genome single base resolution are also briefly discussed. Importantly, the challenges of DNA methylation mechanism of cognitive aging research are brought up, and the possible solutions to tackle these difficulties are put forward.


Assuntos
Envelhecimento Cognitivo/fisiologia , Metilação de DNA , Animais , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa