Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.363
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941607

RESUMO

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Assuntos
Neuroimunomodulação , Humanos , Animais , Intestinos/imunologia , Homeostase , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neurônios/metabolismo , Neurônios/imunologia , Neuropeptídeos/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo
2.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34237253

RESUMO

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Assuntos
Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Larva/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Motivos de Nucleotídeos/genética , RNA-Seq , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Cell ; 173(5): 1265-1279.e19, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775595

RESUMO

Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.


Assuntos
Encéfalo/metabolismo , Neurocinina B/metabolismo , Precursores de Proteínas/metabolismo , Isolamento Social , Estresse Psicológico , Taquicininas/metabolismo , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurocinina B/genética , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Taquicininas/antagonistas & inibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inibidores , Taquicininas/genética , Regulação para Cima/efeitos dos fármacos
4.
Cell ; 168(6): 1135-1148.e12, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28262351

RESUMO

Investigation of host-environment interactions in the gut would benefit from a culture system that maintained tissue architecture yet allowed tight experimental control. We devised a microfabricated organ culture system that viably preserves the normal multicellular composition of the mouse intestine, with luminal flow to control perturbations (e.g., microbes, drugs). It enables studying short-term responses of diverse gut components (immune, neuronal, etc.). We focused on the early response to bacteria that induce either Th17 or RORg+ T-regulatory (Treg) cells in vivo. Transcriptional responses partially reproduced in vivo signatures, but these microbes elicited diametrically opposite changes in expression of a neuronal-specific gene set, notably nociceptive neuropeptides. We demonstrated activation of sensory neurons by microbes, correlating with RORg+ Treg induction. Colonic RORg+ Treg frequencies increased in mice lacking TAC1 neuropeptide precursor and decreased in capsaicin-diet fed mice. Thus, differential engagement of the enteric nervous system may partake in bifurcating pro- or anti-inflammatory responses to microbes.


Assuntos
Clostridium/crescimento & desenvolvimento , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Técnicas de Cultura de Órgãos , Animais , Clostridium/classificação , Clostridium/fisiologia , Intestinos/citologia , Camundongos , Simbiose
5.
Cell ; 170(4): 748-759.e12, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802044

RESUMO

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Formigas/genética , Formigas/crescimento & desenvolvimento , Comportamento Animal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Comportamento Social
6.
Genes Dev ; 36(21-24): 1100-1118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36617877

RESUMO

Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.


Assuntos
Ocitocina , Receptores de Ocitocina , Camundongos , Animais , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Neurônios/fisiologia , Bulbo Olfatório/metabolismo , Neurogênese
7.
Trends Biochem Sci ; 49(4): 361-377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418338

RESUMO

Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery. In this review we dive into the complexity of the OT/VP signaling system in health and disease, provide an overview of relevant pharmacological probes, and discuss the latest trends in therapeutic lead discovery and drug development.


Assuntos
Ocitocina , Vasopressinas , Animais , Humanos , Receptores de Vasopressinas
8.
Immunity ; 51(4): 709-723.e6, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604686

RESUMO

Neuroimmune interactions have emerged as critical modulators of allergic inflammation, and type 2 innate lymphoid cells (ILC2s) are an important cell type for mediating these interactions. Here, we show that ILC2s expressed both the neuropeptide calcitonin gene-related peptide (CGRP) and its receptor. CGRP potently inhibited alarmin-driven type 2 cytokine production and proliferation by lung ILC2s both in vitro and in vivo. CGRP induced marked changes in ILC2 expression programs in vivo and in vitro, attenuating alarmin-driven proliferative and effector responses. A distinct subset of ILCs scored highly for a CGRP-specific gene signature after in vivo alarmin stimulation, suggesting CGRP regulated this response. Finally, we observed increased ILC2 proliferation and type 2 cytokine production as well as exaggerated responses to alarmins in mice lacking the CGRP receptor. Together, these data indicate that endogenous CGRP is a critical negative regulator of ILC2 responses in vivo.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linfócitos/fisiologia , Neuropeptídeos/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Alarminas/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Proliferação de Células , Células Cultivadas , Retroalimentação Fisiológica , Imunidade Inata , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Neuropeptídeos/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Transdução de Sinais , Células Th2/imunologia
9.
Immunity ; 51(4): 682-695.e6, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31353223

RESUMO

Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.


Assuntos
Inflamação/imunologia , Linfócitos/imunologia , Nippostrongylus/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Infecções por Strongylida/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Imunidade Inata , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Análise de Célula Única , Células Th2/imunologia , Quimeras de Transplante
10.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618654

RESUMO

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Neuropeptídeos/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Células Cultivadas , Biologia Computacional , Imunidade Inata , Interleucina-5/genética , Interleucina-5/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neuropeptídeos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células Th2/imunologia , Transcriptoma , Regulação para Cima
11.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653601

RESUMO

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Assuntos
Células Receptoras Sensoriais , Pele , Humanos , Animais , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Pele/imunologia , Neuropeptídeos/metabolismo , Neuropeptídeos/imunologia , Células Dendríticas/imunologia , Neuroimunomodulação , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/imunologia
12.
J Biol Chem ; 300(6): 107321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677517

RESUMO

Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.


Assuntos
Exocitose , Ensaios de Triagem em Larga Escala , Neurônios , Neuropeptídeo Y , Animais , Humanos , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/genética , Ensaios de Triagem em Larga Escala/métodos , Vesículas Secretórias/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
13.
EMBO J ; 40(20): e108614, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34487375

RESUMO

Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time-keeping network. In the absence of network-level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single-cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub-populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide-specific network topologies. This revealed their temporal plasticity, being up-regulated in circadian day. Through intersectional genetics and real-time imaging, we interrogated the contribution of the Prok2-ProkR2 neuropeptidergic axis to network-wide time-keeping. We showed that Prok2-ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network-level properties that underpin robust circadian co-ordination. These results highlight the diverse and distinct contributions of neuropeptide-modulated communication of temporal information across the SCN.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Hormônios Gastrointestinais/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Núcleo Supraquiasmático/metabolismo , Transcriptoma , Animais , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Hormônios Gastrointestinais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Transdução de Sinais , Análise de Célula Única , Núcleo Supraquiasmático/citologia , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
14.
Annu Rev Neurosci ; 40: 51-75, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28375770

RESUMO

In this review, I discuss current knowledge and outstanding questions on the neuromodulators that influence aggressive behavior of the fruit fly Drosophila melanogaster. I first present evidence that Drosophila exchange information during an agonistic interaction and choose appropriate actions based on this information. I then discuss the influence of several biogenic amines and neuropeptides on aggressive behavior. One striking characteristic of neuromodulation is that it can configure a neural circuit dynamically, enabling one circuit to generate multiple outcomes. I suggest a consensus effect of each neuromodulatory molecule on Drosophila aggression, as well as effects of receptor proteins where relevant data are available. Lastly, I consider neuromodulation in the context of strategic action choices during agonistic interactions. Genetic components of neuromodulatory systems are highly conserved across animals, suggesting that molecular and cellular mechanisms controlling Drosophila aggression can shed light on neural principles governing action choice during social interactions.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Drosophila melanogaster/fisiologia , Neurotransmissores/fisiologia , Animais
15.
Bioessays ; 45(9): e2300011, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37327252

RESUMO

Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks. Here, we review our current knowledge on the network mechanisms that underpin systemic osmoregulation and discuss the remarkable parallels between the hormonal networks that regulate body fluid balance and those involved in energy homeostasis to provide a framework for understanding the polymodal optimization of homeostasis in insects.


Assuntos
Osmorregulação , Equilíbrio Hidroeletrolítico , Animais , Equilíbrio Hidroeletrolítico/fisiologia , Homeostase , Pressão Osmótica , Insetos
16.
Proc Natl Acad Sci U S A ; 119(27): e2113749119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763574

RESUMO

Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17ß-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders.


Assuntos
Núcleo Arqueado do Hipotálamo , Estrogênios , Fertilidade , Kisspeptinas , Neurônios , Ovário , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Hipogonadismo/congênito , Hipogonadismo/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ovário/metabolismo
17.
J Allergy Clin Immunol ; 153(3): 868-873.e4, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040043

RESUMO

BACKGROUND: The integumentary system of the skin serves as an exceptional protective barrier, with the stratum corneum situated at the forefront. This outermost layer is composed of keratinocytes that biosynthesize filaggrin (encoded by the gene Flg), a pivotal constituent in maintaining skin health. Nevertheless, the precise role of sensory nerves in restoration of the skin barrier after tape stripping-induced epidermal disruption, in contrast to the wound-healing process, remains a tantalizing enigma. OBJECTIVE: This study aimed to elucidate the cryptic role of sensory nerves in repair of the epidermal barrier following tape stripping-induced disruption. METHODS: Through the implementation of resiniferatoxin (RTX)-treated denervation mouse model, we investigated the kinetics of barrier repair after tape stripping and performed immunophenotyping and gene expression analysis in the skin or dorsal root ganglia (DRG) to identify potential neuropeptides. Furthermore, we assessed the functional impact of candidates on the recovery of murine keratinocytes and RTX-treated mice. RESULTS: Ablation of TRPV1-positive sensory nerve attenuated skin barrier recovery and sustained subcutaneous inflammation, coupled with elevated IL-6 level in ear homogenates after tape stripping. Expression of the keratinocyte differentiation marker Flg in the ear skin of RTX-treated mice was decreased compared with that in control mice. Through neuropeptide screening, we found that the downregulation of Flg by IL-6 was counteracted by somatostatin or octreotide (a chemically stable somatostatin analog). Furthermore, RTX-treated mice given octreotide exhibited a partial improvement in barrier recovery after tape stripping. CONCLUSION: Sensory neurons expressing TRPV1 play an indispensable role in restoring barrier function following epidermal injury. Our findings suggest the potential involvement of somatostatin in restoring epidermal repair after skin injury.


Assuntos
Interleucina-6 , Neuropeptídeos , Camundongos , Animais , Interleucina-6/metabolismo , Octreotida/metabolismo , Epiderme/metabolismo , Somatostatina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38971540

RESUMO

BACKGROUND: Mas-related G-protein coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We identified and characterized novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout (KO) and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in (KI) mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested, in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 KI mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSION: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.

19.
J Allergy Clin Immunol ; 154(1): 11-19, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492673

RESUMO

Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.


Assuntos
Células Dendríticas , Células de Langerhans , Pele , Humanos , Células de Langerhans/imunologia , Animais , Pele/imunologia , Pele/inervação , Células Dendríticas/imunologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/imunologia , Comunicação Celular/imunologia , Neuroimunomodulação
20.
J Allergy Clin Immunol ; 153(4): 924-938, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373475

RESUMO

Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.


Assuntos
Citocinas , Células Receptoras Sensoriais , Humanos , Transdução de Sinais , Inflamação , Neuroimunomodulação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa