Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 339-366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38346274

RESUMO

The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.


Assuntos
Sítio Alostérico , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Receptores Nicotínicos , Transdução de Sinais , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Regulação Alostérica , Humanos , Animais , Cristalografia por Raios X , Sítios de Ligação , Conformação Proteica , Ligantes , Modelos Moleculares , Multimerização Proteica , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/metabolismo
2.
Gut ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926079

RESUMO

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.

3.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740347

RESUMO

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Imagem Multimodal/métodos
4.
J Pak Med Assoc ; 74(1 (Supple-2)): S68-S73, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385475

RESUMO

Objective: To explore a novel and dynamic role for neurogenin-2 in promoting cortical neurogenesis in cells produced from co-culturing neonatal cortical neural progenitor cells with bone marrow stromal cells. METHODS: The experimental study was conducted from June 2016 to January 2019 at the neuropharmacology laboratory of the Hussein Ebrahim Jamal Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, Karachi. The growth of cells at different stages in harvested cells was determined by 3-(4, 5- dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Immunocytochemistry was used to evaluate the protein expressions of neuronal markers and transcription factors. Data was analysed using SPSS 20. RESULTS: Data showed significant generation of neuronal cells and this was also verified by increased expression of nesting in cortical co-cultures with bone marrow stromal cells. Immunoreactive outcomes showed over expressions in co-cultured chlorotoxin cells. Subsequently, neurogenin-2 was found intermixed with induced expressions of transcriptional factor NeuroD1 and reduced glial fibrillary acidic protein-labelled cells. Conclusion: Better understanding of the mechanisms underlying transcriptional modulation of neurogenic events hold the key for emerging treatment approaches towards neurodegeneration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Medula Óssea , Proteínas do Tecido Nervoso , Neurônios , Humanos , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
5.
Pract Neurol ; 24(3): 207-214, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38212111

RESUMO

Sexual dysfunction is common in men and women with neurological diseases. Medications used in neurology can cause sexual dysfunction independently of the disease process and this may adversely affect patients' quality of life. This review focuses on medications commonly prescribed to neurological patients that may contribute to altered sexual function, and discusses how they may differ in men and women.


Assuntos
Doenças do Sistema Nervoso , Disfunções Sexuais Fisiológicas , Humanos , Disfunções Sexuais Fisiológicas/induzido quimicamente , Doenças do Sistema Nervoso/induzido quimicamente , Masculino , Feminino , Neurologia/métodos
6.
J Biol Chem ; 298(8): 102218, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780839

RESUMO

The stinging hairs of plants from the family Urticaceae inject compounds that inflict pain to deter herbivores. The sting of the New Zealand tree nettle (Urtica ferox) is among the most painful of these and can cause systemic symptoms that can even be life-threatening; however, the molecular species effecting this response have not been elucidated. Here we reveal that two classes of peptide toxin are responsible for the symptoms of U. ferox stings: Δ-Uf1a is a cytotoxic thionin that causes pain via disruption of cell membranes, while ß/δ-Uf2a defines a new class of neurotoxin that causes pain and systemic symptoms via modulation of voltage-gated sodium (NaV) channels. We demonstrate using whole-cell patch-clamp electrophysiology experiments that ß/δ-Uf2a is a potent modulator of human NaV1.5 (EC50: 55 nM), NaV1.6 (EC50: 0.86 nM), and NaV1.7 (EC50: 208 nM), where it shifts the activation threshold to more negative potentials and slows fast inactivation. We further found that both toxin classes are widespread among members of the Urticeae tribe within Urticaceae, suggesting that they are likely to be pain-causing agents underlying the stings of other Urtica species. Comparative analysis of nettles of Urtica, and the recently described pain-causing peptides from nettles of another genus, Dendrocnide, indicates that members of tribe Urticeae have developed a diverse arsenal of pain-causing peptides.


Assuntos
Neurotoxinas , Peptídeos , Toxinas Biológicas , Urticaceae , Humanos , Neurotoxinas/química , Dor , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/toxicidade , Toxinas Biológicas/química , Urticaceae/química , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
7.
Neuroimage ; 275: 120161, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172662

RESUMO

The hierarchical characteristics of the brain are prominent in the pharmacological treatment of psychiatric diseases, primarily targeting cellular receptors that extend upward to intrinsic connectivity within a region, interregional connectivity, and, consequently, clinical observations such as an electroencephalogram (EEG). To understand the long-term effects of neuropharmacological intervention on neurobiological properties at different hierarchical levels, we explored long-term changes in neurobiological parameters of an N-methyl-D-aspartate canonical microcircuit model (CMM-NMDA) in the default mode network (DMN) and auditory hallucination network (AHN) using dynamic causal modeling of longitudinal EEG in clozapine-treated patients with schizophrenia. The neurobiological properties of the CMM-NMDA model associated with symptom improvement in schizophrenia were found across hierarchical levels, from a reduced membrane capacity of the deep pyramidal cell and intrinsic connectivity with the inhibitory population in DMN and intrinsic and extrinsic connectivity in AHN. The medication duration mainly affects the intrinsic connectivity and NMDA time constant in DMN. Virtual perturbation analysis specified the contribution of each parameter to the cross-spectral density (CSD) of the EEG, particularly intrinsic connectivity and membrane capacitances for CSD frequency shifts and progression. It further reveals that excitatory and inhibitory connectivity complements frequency-specific CSD changes, notably the alpha frequency band in DMN. Positive and negative synergistic interactions exist between neurobiological properties primarily within the same region in patients treated with clozapine. The current study shows how computational neuropharmacology helps explore the multiscale link between neurobiological properties and clinical observations and understand the long-term mechanism of neuropharmacological intervention reflected in clinical EEG.


Assuntos
Clozapina , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Clozapina/farmacologia , Clozapina/uso terapêutico , N-Metilaspartato , Neurofarmacologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Alucinações , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa
8.
Eur J Neurosci ; 57(12): 2062-2096, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889803

RESUMO

Mice and rats emit ultrasonic vocalizations (USVs), which may express their arousal and emotional states, to communicate with each other. There is continued scientific effort to better understand the functions of USVs as a central element of the rodent behavioral repertoire. However, studying USVs is not only important because of their ethological relevance, but also because they are widely applied as a behavioral readout in various fields of biomedical research. In mice and rats, a large number of experimental models of brain disorders exist and studying the emission of USVs in these models can provide valuable information about the health status of the animals and the effectiveness of possible interventions, both environmental and pharmacological. This review (i) provides an updated overview of the contexts in which ultrasonic calling behaviour of mice and rats has particularly high translational value, and (ii) gives some examples of novel approaches and tools used for the analysis of USVs in mice and rats, combining qualitative and quantitative methods. The relevance of age and sex differences as well as the importance of longitudinal evaluations of calling and non-calling behaviour is also discussed. Finally, the importance of assessing the communicative impact of USVs in the receiver, that is, through playback studies, is highlighted.


Assuntos
Ultrassom , Vocalização Animal , Feminino , Ratos , Animais , Masculino , Neurofarmacologia , Emoções , Roedores
9.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111048

RESUMO

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Assuntos
Ácidos Graxos Ômega-3 , Microglia , Receptores Acoplados a Proteínas G , Adulto , Animais , Humanos , Camundongos , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Biochem Soc Trans ; 51(4): 1713-1731, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37431773

RESUMO

N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.


Assuntos
Receptores Ionotrópicos de Glutamato , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Ionotrópicos de Glutamato/química , Transdução de Sinais , Comunicação Celular
11.
Epilepsia ; 64(11): 2958-2967, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660326

RESUMO

OBJECTIVE: In the present study, we describe a novel class of small-molecule synthetic compounds that ameliorate seizure-like behavior, using an electroshock assay to examine seizure duration in Caenorhabditis elegans. We also examine the hypothesis that these compounds, which we have called resveramorphs (RVMs), act by an irreversible binding mechanism. METHODS: Our electroshock assay examines seizure duration in C. elegans and can be used as a drug-screening platform for the identification of novel anti-seizure agents. The use of C. elegans allows for a rapid and efficient method of drug screening that may take years in other higher-order model organisms. A novel wash method, paired with our electroshock assay, allows us to discern differences in biological activity when the C. elegans are incubated in different drug solutions, to establish whether these compounds can be "washed" off. RESULTS: One of the RVMs (RVM-3), reported here for the first time, was found to be potent at picomolar concentrations. Insights also provided information on the potential mechanisms of action of this compound. Covalent binding is thought to provide a strong irreversible bond because of a change in structure between two of the novel RVMs described in this work. This was also discerned through the novel wash method paired with our electroshock assay. SIGNIFICANCE: RVM-3 was evaluated using our assay and found to possess anti-seizure activity at picomolar concentrations. These insights also provide information on the potential mechanisms of action of these compounds, which may include covalent binding. This was also discerned through a novel wash method paired with our electroshock assay.


Assuntos
Anticonvulsivantes , Caenorhabditis elegans , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Eletrochoque , Modelos Animais de Doenças , Convulsões/tratamento farmacológico
12.
J Neural Transm (Vienna) ; 130(12): 1579-1599, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37391573

RESUMO

Methylphenidate (MPD) is a psychostimulant used to treat attention deficit hyperactivity disorder. MPD exerts its neurocognitive effects through increasing concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the neuronal synapse. This study recorded from adult freely behaving rats a total of 1170 neurons, 403 from the ventral tegmental area (VTA), 409 from locus coeruleus (LC), and 356 from dorsal raphe (DR) nucleus, which are the main sources of DA, NE, and 5-HT to the mesocorticolimbic circuitry, respectively. Electrophysiological and behavioral activities were recorded simultaneously following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD. The uniqueness of this study is the evaluation of neuronal activity based on the behavioral response to chronic MPD. Animals received daily saline or MPD administration on experimental days 1-6 (ED1-6), followed by a 3-day wash-out period, and then MPD rechallenge on ED10. Each chronic MPD dose elicits behavioral sensitization in some animals, while in others, behavioral tolerance. Neuronal excitation following chronic MPD was observed in brains areas of animals exhibiting behavioral sensitization, while neuronal attenuation following chronic MPD was observed in those animals expressing behavioral tolerance. DR neuronal activity was most affected in response to acute and chronic MPD administration and responded differently compared to the neurons recorded from VTA and LC neurons at all doses. This suggests that although not directly related, DR and 5-HT are involved in the acute and chronic effects of MPD in adult rats, but exhibit a different role in response to MPD.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Ratos , Animais , Metilfenidato/farmacologia , Área Tegmentar Ventral , Núcleo Dorsal da Rafe , Locus Cerúleo , Serotonina/farmacologia , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga , Estimulantes do Sistema Nervoso Central/farmacologia , Neurônios
13.
J Sleep Res ; : e14038, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37678806

RESUMO

Patients with neurocognitive disorders often battle sleep disturbances. Kynurenic acid is a tryptophan metabolite of the kynurenine pathway implicated in the pathology of these illnesses. Modest increases in kynurenic acid, an antagonist at glutamatergic and cholinergic receptors, result in cognitive impairments and sleep dysfunction. We explored the hypothesis that inhibition of the kynurenic acid synthesising enzyme, kynurenine aminotransferase II, may alleviate sleep disturbances. At the start of the light phase, adult male and female Wistar rats received systemic injections of either: (i) vehicle; (ii) kynurenine (100 mg kg-1 ; i.p.); (iii) the kynurenine aminotransferase II inhibitor, PF-04859989 (30 mg kg-1 ; s.c.); or (iv) PF-04859989 and kynurenine in combination. Kynurenine and kynurenic acid levels were evaluated in the plasma and brain. Separate animals were implanted with electroencephalogram and electromyogram telemetry devices to record polysomnography, and evaluate the vigilance states wake, rapid eye movement sleep and non-rapid eye movement sleep following each treatment. Kynurenine challenge increased brain kynurenic acid and resulted in reduced rapid eye movement sleep duration, non-rapid eye movement sleep delta power and sleep spindles. PF-04859989 reduced brain kynurenic acid formation when given prior to kynurenine, prevented disturbances in rapid eye movement sleep and sleep spindles, and enhanced non-rapid eye movement sleep. Our findings suggest that reducing kynurenic acid in conditions where the kynurenine pathway is activated may serve as a potential strategy for improving sleep dynamics.

14.
Ann Pharmacother ; 57(7): 847-854, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36384314

RESUMO

OBJECTIVE: To evaluate clinical data using oral n-acetylcysteine (NAC) in obsessive-compulsive and related disorders (OCDRD) treatment. DATA SOURCES: PubMed, Ovid MEDLINE (1946-July 2022), and the Cochrane Library database were searched using the terms NAC, children, adolescent, obsessive-compulsive disorder (OCD), trichotillomania (TTM), excoriation, hoarding disorder, and body dysmorphic disorder. Bibliographies were reviewed for relevant trials and case studies. STUDY SELECTION AND DATA EXTRACTION: English language, clinical trials, or case studies analyzing NAC use in patients aged 3 to 21 years old with OCDRD as determined by the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition. DATA SYNTHESIS: Three randomized double-blind placebo-controlled trials of NAC in children and adolescents studied 121 patients with OCDRD. Trials assessed symptom severity from baseline to 10 to 12 weeks of NAC therapy. Two OCD trials identified statistically significant improvements, with only 1 trial demonstrating a clear clinically relevant difference from placebo. One trial in TTM found no difference between the NAC and placebo. Adverse effects were mild and included nausea, blurred vision, fatigue, tremor, and sweats. N-acetylcysteine titrated to 2400 or 2700 mg/day in divided doses was the most studied regimen. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Many OCDRD patients fail to completely respond to first-line treatment with cognitive behavioral therapy (CBT) and/or selective serotonin reuptake inhibitors (SSRIs) leaving practitioners with few additional treatment options. Preliminary efficacy and safety data are presented in this review. CONCLUSIONS: Limited evidence suggests children and adolescents with OCD refractory to SSRIs or CBT may benefit from NAC augmentation.


Assuntos
Terapia Cognitivo-Comportamental , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtorno Obsessivo-Compulsivo , Humanos , Adolescente , Criança , Pré-Escolar , Adulto Jovem , Adulto , Acetilcisteína/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/psicologia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Hum Psychopharmacol ; 38(3): e2866, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36866677

RESUMO

OBJECTIVE: To review the literature on the neuropharmacology of synthetic cathinones. METHODS: A comprehensive literature search was carried out across multiple databases (mainly PubMed, World Wide Web, and Google Scholar) using relevant keywords. RESULTS: Cathinones exhibit a broad toxicological profile, mimicking the effects of a wide variety of 'classic drugs' such as 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine and cocaine. Even small structural changes affect their interactions with key proteins. This article reviews existing knowledge of the mechanisms of action of cathinones at the molecular level, and key findings from research on their structure-activity relationship. The cathinones are also classified according to their chemical structure and neuropharmacological profiles. CONCLUSIONS: Synthetic cathinones represent one of the most numerous and widespread groups among new psychoactive substances. Initially developed for therapeutic purposes, they quickly started to be used recreationally. With a rapidly increasing number of new agents entering the market, structure-activity relationship studies are valuable for assessing and predicting the addictive potential and toxicity of new and potential future substances. The neuropharmacological properties of synthetic cathinones are still not fully understood. A full elucidation of the role of some key proteins, including organic cation transporters, requires detailed studies.


Assuntos
Alcaloides , Estimulantes do Sistema Nervoso Central , Metanfetamina , Humanos , Catinona Sintética , Neurofarmacologia , Alcaloides/efeitos adversos , Metanfetamina/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Psicotrópicos/efeitos adversos
16.
Alzheimers Dement ; 19 Suppl 9: S42-S48, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37296082

RESUMO

INTRODUCTION: We examined neuropsychiatric symptoms (NPS) and psychotropic medication use in a large sample of individuals with early-onset Alzheimer's disease (EOAD; onset 40-64 years) at the midway point of data collection for the Longitudinal Early-onset Alzheimer's Disease Study (LEADS). METHODS: Baseline NPS (Neuropsychiatric Inventory - Questionnaire; Geriatric Depression Scale) and psychotropic medication use from 282 participants enrolled in LEADS were compared across diagnostic groups - amyloid-positive EOAD (n = 212) and amyloid negative early-onset non-Alzheimer's disease (EOnonAD; n = 70). RESULTS: Affective behaviors were the most common NPS in EOAD at similar frequencies to EOnonAD. Tension and impulse control behaviors were more common in EOnonAD. A minority of participants were using psychotropic medications, and use was higher in EOnonAD. DISCUSSION: Overall NPS burden and psychotropic medication use were higher in EOnonAD than EOAD participants. Future research will investigate moderators and etiological drivers of NPS, and NPS differences in EOAD versus late-onset AD.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Estudos Longitudinais , Coleta de Dados
17.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983000

RESUMO

Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.


Assuntos
Medo , N-Metilaspartato , Humanos , Medo/fisiologia , Endocanabinoides/fisiologia , Extinção Psicológica/fisiologia , Norepinefrina , Transmissão Sináptica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Pract Neurol ; 23(4): 327-338, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37173131

RESUMO

Autoimmune neuromuscular diseases are common and often treatable causes for peripheral nervous system dysfunction. If not optimally managed, they result in meaningful impairments and disability. The treating neurologist should aim to maximise clinical recovery with minimal iatrogenic risk. This requires careful patient and medication selection, appropriate counselling and close monitoring of clinical efficacy and safety. Here, we summarise our consensus departmental approach to first-line immunosuppression in neuromuscular diseases. We combine multispecialty evidence and expertise with a focus on autoimmune neuromuscular diseases to create guidance on starting, dosing and monitoring for toxic effects of the commonly used drugs. These include corticosteroids, steroid-sparing agents and cyclophosphamide. We also provide efficacy monitoring advice, as clinical response informs dosage and drug choice. The principles of this approach could be applied across much of the spectrum of immune-mediated neurological disorders where there is significant therapeutic crossover.


Assuntos
Doenças Neuromusculares , Humanos , Doenças Neuromusculares/tratamento farmacológico , Terapia de Imunossupressão/efeitos adversos
19.
Saudi Pharm J ; 31(6): 929-941, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234345

RESUMO

As the incidence of neurodegeneration and cancer fatalities remains high, researchers are focusing their efforts on discovering and developing effective medications, especially plant-based drugs, against these diseases. Hence, this research aimed to investigate the neuropharmacological potentials of aerial parts of Tetrastigma leucostaphyllum, employing some behavioral models, while the antiproliferative effect was explored against a panel of cancer cell lines (MGC-803, A549, U-251, HeLa and MCF-7) using a colorimetric assay. In addition, active extracts were analyzed by GC-MS technique to identify the active compounds, where some selective compounds were docked with the particular pure proteins to check their binding affinity. Results from neuropharmacological research indicated that the total extract and its fractions may be effective (p = 0.05, 0.01, and 0.001, respectively) at doses of 100, 200, and 400 mg/kg of animal body weight. The greatest antidepressant and anxiolytic effects were found in the n-hexane fraction. The n-haxane fraction also exhibited the highest cytotoxicity against the U-251 cell line (IC5014.3 µg/mL), followed by the A549, MG-803, HeLa, and MCF-7 cell lines, respectively. From the n-hexane fraction, ten chemicals were detected using the GC-MS method. Additionally, the in-silico research revealed interactions between the n-hexane fractions' identified compounds and the antidepressant, anxiolytic, and cytotoxic receptors. The molecules showed binding affinities that ranged from 4.6 kcal/mol to 6.8 kcal/mol, which indicates the likelihood that they would make good drug candidates. This study highlighted the plant's neuropharmacological and cytotoxic properties, however, more research is needed to determine the etymological origin of these effects.

20.
Diabetes Obes Metab ; 24(7): 1255-1266, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35293666

RESUMO

AIM: To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS: Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS: Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS: α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.


Assuntos
Compostos de Benzilideno , Glicemia , Resistência à Insulina , Agonistas Nicotínicos , Piridinas , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Compostos de Benzilideno/farmacologia , Glicemia/análise , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Teste de Tolerância a Glucose , Humanos , Incretinas/uso terapêutico , Insulina/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Tirosina/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa