Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
1.
Cell ; 187(5): 1160-1176.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382524

RESUMO

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Inflamação/tratamento farmacológico , Transdução de Sinais , Regulação Alostérica
2.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897571

RESUMO

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Adulto , Animais , Humanos , Glucagon/genética , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Pâncreas/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo
3.
FASEB J ; 38(1): e9664, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038805

RESUMO

The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.


Assuntos
Lesão Pulmonar Aguda , Estimulação do Nervo Vago , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Lipopolissacarídeos/toxicidade , Netrina-1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
4.
Proc Natl Acad Sci U S A ; 119(43): e2208081119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251999

RESUMO

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that modulates neuronal excitability, largely by allowing Ca2+ permeation. Agonist binding promotes transition from a resting state to an activated state, and then rapidly to a desensitized state. Recently, cryogenic electron microscopy (cryo-EM) structures of the human α7 receptor in nanodiscs were reported in multiple conformations. These were selectively stabilized by inhibitory, activating, or potentiating compounds. However, the functional annotation of these structures and their differential interactions with unresolved lipids and ligands remain incomplete. Here, we characterized their ion permeation, membrane interactions, and ligand binding using computational electrophysiology, free-energy calculations, and coarse-grained molecular dynamics. In contrast to nonconductive structures in apparent resting and desensitized states, the structure determined in the presence of the potentiator PNU-120596 was consistent with an activated state permeable to Ca2+. Transition to this state was associated with compression and rearrangement of the membrane, particularly in the vicinity of the peripheral MX helix. An intersubunit transmembrane site was implicated in selective binding of either PNU-120596 in the activated state or cholesterol in the desensitized state. This substantiates functional assignment of all three lipid-embedded α7-receptor structures with ion-permeation simulations. It also proposes testable models of their state-dependent interactions with lipophilic ligands, including a mechanism for allosteric modulation at the transmembrane subunit interface.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Regulação Alostérica , Colesterol , Humanos , Isoxazóis , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Lipídeos , Compostos de Fenilureia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
5.
J Biol Chem ; 299(5): 104707, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061001

RESUMO

Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3ß2, α3ß4, and α4ß2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.


Assuntos
Receptores Nicotínicos , SARS-CoV-2 , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/genética , COVID-19 , Neurotoxinas , Receptores Nicotínicos/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
Biochem Biophys Res Commun ; 709: 149825, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537599

RESUMO

SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Ligação Proteica , Receptores Nicotínicos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química
7.
Mol Carcinog ; 63(2): 253-265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921560

RESUMO

Evidence has shown a strong relationship between smoking and epithelial mesenchymal transition (EMT). α5-nicotinic acetylcholine receptor (α5-nAChR) contributes to nicotine-induced lung cancer cell EMT. The cytoskeleton-associated protein PLEK2 is mainly involved in cytoskeletal protein recombination and cell stretch migration regulation, which is closely related to EMT. However, little is known about the link between nicotine/α5-nAChR and PLEK2 in lung adenocarcinoma (LUAD). Here, we identified a link between α5-nAChR and PLEK2 in LUAD. α5-nAChR expression was correlated with PLEK2 expression, smoking status and lower survival in vivo. α5-nAChR mediated nicotine-induced PLEK2 expression via STAT3. α5-nAChR/PLEK2 signaling is involved in LUAD cell migration, invasion and stemness. Moreover, PLEK2 was found to interact with CFL1 in nicotine-induced EMT in LUAD cells. Furthermore, the functional link among α5-nAChR, PLEK2 and CFL1 was confirmed in mouse xenograft tissues and human LUAD tissues. These findings reveal a novel α5-nAChR/PLEK2/CFL1 pathway involved in nicotine-induced LUAD progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptores Nicotínicos , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Fumar
8.
FASEB J ; 37(9): e23120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527279

RESUMO

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácidos Graxos , Regulação para Baixo , Hipotálamo/metabolismo
9.
Synapse ; 78(1): e22285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287475

RESUMO

Agents that positively modulate the activity of α7nAChRs are used as cognitive enhancers and for the treatment of hippocampus-dependent functional decline. However, it is not known whether the expression and the effects of α7nAChRs apply to the entire longitudinal axis of the hippocampus equally. Given that cholinergic system-involving hippocampal functions are not equally distributed along the hippocampus, we comparatively examined the expression and the effects of α7nAChRs on excitatory synaptic transmission between the dorsal and the ventral hippocampal slices from adult rats. We found that α7nAChRs are equally expressed in the CA1 field of the two segments of the hippocampus. However, activation of α7nAChRs by their highly selective agonist PNU 282987 induced a gradually developing increase in field excitatory postsynaptic potential only in the dorsal hippocampus. This long-term potentiation was not reversed upon application of nonselective nicotinic receptor antagonist mecamylamine, but the induction of potentiation was prevented by prior blockade of α7nAChRs by their antagonist MG 624. In contrast to the long-term synaptic plasticity, we found that α7nAChRs did not modulate short-term synaptic plasticity in either the dorsal or the ventral hippocampus. These results may have implications for the role that α7nAChRs play in specifically modulating functions that depend on the normal function of the dorsal hippocampus. We propose that hippocampal functions that rely on a direct α7 nAChR-mediated persistent enhancement of glutamatergic synaptic transmission are preferably supported by dorsal but not ventral hippocampal synapses.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hipocampo/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia
10.
Mol Cell Biochem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771378

RESUMO

Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.

11.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438581

RESUMO

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Assuntos
Neurônios GABAérgicos , Hiperalgesia , Camundongos Endogâmicos C57BL , Receptores Nicotínicos , Animais , Receptores Nicotínicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Masculino , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Camundongos , Parte Reticular da Substância Negra/metabolismo , Parte Reticular da Substância Negra/efeitos dos fármacos , Nicotina/farmacologia , Analgésicos/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Capsaicina/farmacologia , Acetilcolina/metabolismo , Optogenética , Limiar da Dor/efeitos dos fármacos
12.
Acta Pharmacol Sin ; 45(7): 1349-1365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504011

RESUMO

Ischemic stroke is a major cause of disability and death worldwide, and its management requires urgent attention. Previous studies have shown that vagus nerve stimulation (VNS) exerts neuroprotection in ischemic stroke by inhibiting neuroinflammation and apoptosis. In this study, we evaluated the timing for VNS intervention in ischemic stroke, and the underlying mechanisms  of VNS-induced neuroprotection. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. The left vagus nerve at cervical level was exposed and attached to an electrode connected to a low-frequency electrical stimulator. Vagus nerve stimulation (VNS) was given for 60 min before, during and after tMCAO (Pre-VNS, Dur-VNS, Post-VNS). Neurological function was assessed 24 h after reperfusion. We found that all the three VNS significantly protected against the tMCAO-induced injury evidenced by improved neurological function and reduced infarct volume. Moreover, the Pre-VNS was the most effective against the ischemic injury. We found that tMCAO activated microglia in the ischemic core and penumbra regions of the brain, followed by the NLRP3 inflammasome activation-induced neuroinflammation, which finally triggered neuronal death. VNS treatment preserved α7nAChR expression in the penumbra regions, inhibited NLRP3 inflammasome activation and ensuing neuroinflammation, rescuing cerebral neurons. The role of α7nAChR in microglial NLRP3 inflammasome activation in ischemic stroke was further validated using genetic manipulations, including Chrna7 knockout mice and microglial Chrna7 overexpression mice, as well as pharmacological interventions using the α7nAChR inhibitor methyllycaconitine and agonist PNU-282987. Collectively, this study demonstrates the potential of VNS as a safe and effective strategy to treat ischemic stroke, and presents a new approach targeting microglial NLRP3 inflammasome, which might be therapeutic for other inflammation-related diseases.


Assuntos
Infarto da Artéria Cerebral Média , Inflamassomos , AVC Isquêmico , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estimulação do Nervo Vago/métodos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Camundongos , Inflamassomos/metabolismo , Masculino , Infarto da Artéria Cerebral Média/terapia , Neuroproteção , Camundongos Knockout
13.
Cell Mol Life Sci ; 80(6): 164, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231269

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4ß2 and α3ß4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.


Assuntos
Receptores Nicotínicos , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica , Acetilcolina/farmacologia , Receptores Nicotínicos/metabolismo
14.
Cell Mol Life Sci ; 80(5): 119, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029227

RESUMO

Chronic stress significantly elevates the expression levels of various neurotransmitters in the tumour microenvironment, thereby promoting the cell growth and metastasis of lung adenocarcinoma (LUAD). However, the role of chronic stress in the progression of LUAD remains unclear. In this study, we found that chronic restraint stress increases the levels of the neurotransmitter acetylcholine (ACh), and the α5-nicotinic acetylcholine receptor (α5-nAChR) and decreased fragile histidine triad (FHIT) expression in vivo. Crucially, the increased ACh levels promoted LUAD cell migration and invasion via modulation of the α5-nAChR/DNA methyltransferase 1 (DNMT1)/FHIT axis. In a chronic unpredictable stress (CUMS) mouse model, chronic stress promotes tumour development, accompanied by changes in α5-nAChR, DNMT1, FHIT, and vimentin. Together, these findings reveal a novel chronic stress-mediated LUAD signalling pathway: chronic stress enforces lung adenocarcinoma cell invasion and migration via the ACh/α5-nAChR/FHIT axis, which could be a potential therapeutic target for chronic stress-related LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptores Nicotínicos , Animais , Camundongos , Nicotina/farmacologia , Acetilcolina/farmacologia , Receptores Nicotínicos/genética , Transdução de Sinais , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Mar Drugs ; 22(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667758

RESUMO

Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.


Assuntos
Alcaloides , Isoquinolinas , Animais , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Invertebrados/química , Piridinas/farmacologia , Piridinas/química , Piridinas/isolamento & purificação , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Estrutura Molecular
16.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667764

RESUMO

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Assuntos
Antineoplásicos , Sobrevivência Celular , Neoplasias Pulmonares , Nicotina , Espécies Reativas de Oxigênio , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Células A549 , Nicotina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Antagonistas Nicotínicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cálcio/metabolismo , Poríferos/química
17.
Mar Drugs ; 22(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535451

RESUMO

α-Conotoxins (α-CTxs) are structurally related peptides that antagonize nicotinic acetylcholine receptors (nAChRs), which may serve as new alternatives to opioid-based treatment for pain-related conditions. The non-natural amino acid analogues of α-CTxs have been demonstrated with improved potency compared to the native peptide. In this study, we chemically synthesized Dab/Dap-substituted analogues of α-CTx PeIA and evaluated their activity at heterologously expressed human α9α10 nAChRs. PeIA[S4Dap, S9Dap] had the most potent half-maximal inhibitory concentration (IC50) of 0.93 nM. Molecular dynamic simulations suggested that the side chain amino group of Dap4 formed additional hydrogen bonds with S168 and D169 of the receptor and Dap9 formed an extra hydrogen bond interaction with Q34, which is distinctive to PeIA. Overall, our findings provide new insights into further development of more potent analogues of α-CTxs, and PeIA[S4Dap, S9Dap] has potential as a drug candidate for the treatment of chronic neuropathic pain.


Assuntos
Conotoxinas , Receptores Nicotínicos , Humanos , Aminoácidos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
18.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667766

RESUMO

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Assuntos
Iminas , Toxinas Marinhas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinhas/química , Toxinas Marinhas/farmacologia , Toxinas Marinhas/toxicidade , Iminas/química , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Relação Estrutura-Atividade
19.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579823

RESUMO

Human adult muscle-type acetylcholine receptors are heteropentameric ion channels formed from four different, but evolutionarily related, subunits. These subunits assemble with a precise stoichiometry and arrangement such that two chemically distinct agonist-binding sites are formed between specific subunit pairs. How this subunit complexity evolved and became entrenched is unclear. Here we show that a single historical amino acid substitution is able to constrain the subunit stoichiometry of functional acetylcholine receptors. Using a combination of ancestral sequence reconstruction, single-channel electrophysiology, and concatenated subunits, we reveal that an ancestral ß-subunit can not only replace the extant ß-subunit but can also supplant the neighboring δ-subunit. By forward evolving the ancestral ß-subunit with a single amino acid substitution, we restore the requirement for a δ-subunit for functional channels. These findings reveal that a single historical substitution necessitates an increase in acetylcholine receptor complexity and, more generally, that simple stepwise mutations can drive subunit entrenchment in this model heteromeric protein.


Assuntos
Substituição de Aminoácidos , Multimerização Proteica , Receptores Nicotínicos/genética , Linhagem Celular , Evolução Molecular , Humanos , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785596

RESUMO

One of the most fundamental questions in the field of Cys-loop receptors (pentameric ligand-gated ion channels, pLGICs) is how the affinity for neurotransmitters and the conductive/nonconductive state of the transmembrane pore are correlated despite the ∼60-Šdistance between the corresponding domains. Proposed mechanisms differ, but they all converge into the idea that interactions between wild-type side chains across the extracellular-transmembrane-domain (ECD-TMD) interface are crucial for this phenomenon. Indeed, the successful design of fully functional chimeras that combine intact ECD and TMD modules from different wild-type pLGICs has commonly been ascribed to the residual conservation of sequence that exists at the level of the interfacial loops even between evolutionarily distant parent channels. Here, using mutagenesis, patch-clamp electrophysiology, and radiolabeled-ligand binding experiments, we studied the effect of eliminating this residual conservation of sequence on ion-channel function and cell-surface expression. From our results, we conclude that proper state interconversion ("gating") does not require conservation of sequence-or even physicochemical properties-across the ECD-TMD interface. Wild-type ECD and TMD side chains undoubtedly interact with their surroundings, but the interactions between them-straddling the interface-do not seem to be more important for gating than those occurring elsewhere in the protein. We propose that gating of pLGICs requires, instead, that the overall structure of the interfacial loops be conserved, and that their relative orientation and distance be the appropriate ones for changes in one side to result in changes in the other, in a phenomenon akin to the nonspecific "bumping" of closely apposed domains.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Ativação do Canal Iônico , Transdução de Sinais , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Galinhas , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa