Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 125: 544-552, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375937

RESUMO

Ammonia nitrogen (NH4+-N) is a ubiquitous environmental pollutant, especially in offshore aquaculture systems. Electrochemical oxidation is very promising to remove NH4+-N, but suffers from the use of precious metals anodes. In this work, a robust and cheap electrocatalyst, iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C), was developed for electrochemical removal of NH4+-N from in wastewater containing chloride. The Fe-SAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon (Fe-NPs/N-C), unmodified carbon and conventional Ti/IrO2-TiO2-RuO2 electrodes. And high removal efficiency (> 99%) could be achieved as well as high N2 selectivity (99.5%) at low current density. Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH4+-N. This study provides promising inexpensive catalysts for NH4+-N removal in aquaculture wastewater.


Assuntos
Compostos de Amônio , Nitrogênio , Águas Residuárias , Ferro , Cloretos , Carbono
2.
Nanotechnology ; 32(50)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34547727

RESUMO

Low-cost and high-efficiency transition metal oxide catalysts are desired for high-efficiency water splitting technology. An applying magnetic field (MF) enhancement method is presented to improve the oxygen evolution reaction (OER) performance of NiCo-spinel magnetic catalysts, the enhancement of OER performance depends on the applied MF strength and magnetic properties of catalysts. The maximum enhanced current density percentage of about 90.6%, 93.7%, and 70.1% are obtained by applying 105 mT MF in NiCo2O4, Ni1.5Co1.5O4, and Ni2CoO4, respectively. The enhanced performance originates from the improved intrinsic activity and facilitated mass transfer process. The MF decreases the activation energy, which then leads to the improvement of intrinsic activity. This work provides more basic data for further gaining into the enhanced mechanism by applying the MF, meanwhile, the strategy can be used to enhance the performances of other electrocatalysts.

3.
Molecules ; 26(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885951

RESUMO

Fluorination is considered as a means of reducing the degradation of Fe/N/C, a highly active FeNx-doped disorganized carbon catalyst for the oxygen reduction reaction (ORR) in PEM fuel cells. Our recent experiments have, however, revealed that fluorination poisons the FeNx moiety of the Fe/N/C catalytic site, considerably reducing the activity of the resulting catalyst to that of carbon only doped with nitrogen. Using the density functional theory (DFT), we clarify in this work the mechanisms by which fluorine interacts with the catalyst. We studied 10 possible FeNx site configurations as well as 2 metal-free sites in the absence or presence of fluorine molecules and atoms. When the FeNx moiety is located on a single graphene layer accessible on both sides, we found that fluorine binds strongly to Fe but that two F atoms, one on each side of the FeNx plane, are necessary to completely inhibit the catalytic activity of the FeNx sites. When considering the more realistic model of a stack of graphene layers, only one F atom is needed to poison the FeNx moiety on the top layer since ORR hardly takes place between carbon layers. We also found that metal-free catalytic N-sites are immune to poisoning by fluorination, in accordance with our experiments. Finally, we explain how most of the catalytic activity can be recovered by heating to 900 °C after fluorination. This research helps to clarify the role of metallic sites compared to non-metallic ones upon the fluorination of FeNx-doped disorganized carbon catalysts.

4.
Small ; 13(21)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394487

RESUMO

Developing high-performance but low-cost hydrogen evolution reaction (HER) electrocatalysts with superior activity and stability for future sustainable energy conversion technologies is highly desired. Tuning of microstructure, configuration, and chemical composition are paramount to developing effective non-noble electrocatalysts for HER. Herein, a universal "nanocasting" method is reported to construct graphene decorated with uniform ternary (CoP)x -(FeP)1-x (0 ≤ x ≤ 1) nanorods hybrids with different chemical compositions [(CoP)x -(FeP)1-x -NRs/G] as a highly active and durable nonprecious-metal electrocatalyst for the HER. The optimized (CoP)0.54 -(FeP)0.46 -NRs/G electrocatalyst exhibits overpotentials of as low as 57 and 97 mV at 10 mA cm-2 , Tafel slopes of 52 and 62 mV dec-1 , exchange current densities of 0.489 and 0.454 mA cm-2 , and Faradaic efficiency of nearly 100% in acidic and alkaline media, respectively. More importantly, this electrocatalyst also exhibits high tolerance and durability in a wide pH range and keeps catalytic activity for at least 3000 cycles and 24 h of sustained hydrogen production. The excellent catalytic performance of the (CoP)x -(FeP)1-x -NRs/G electrocatalyst may be ascribed to its unique mesoporous structure and strong synergistic effect between CoP and FeP. Thus, the work provides a feasible way to fabricate cheap and highly efficient electrocatalyst as alternatives for Pt-based electrocatalysts for HER in electrochemical water splitting.

5.
J Colloid Interface Sci ; 677(Pt A): 983-993, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39128292

RESUMO

Direct lignin fuel cells (DLFC) are one of the important forms of high value-added utilization of lignin. In this study, lignin was studied not only as a fuel but also as a catalyst. Specifically, Kraft lignin was modified with ZnCl2, KOH and THF (Tetrahydrofuran) respectively, and added to the catalyst after activation. The results of scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), Brunauer - Emmett - Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra shown that AL/FePc-NrGO (activated lignin/iron phthalocyanine/nitrogen-doped reduction of graphene oxide) three-dimensional composite catalyst has been synthesized. The results showed that KOH-activated Kraft lignin had the best performance as an oxygen reduction reaction (ORR) catalyst, with a half-wave potential (E1/2) of 0.73 V and a limiting diffusion current density of 4.3 mA cm-1. The THF-modified catalyst showed similar stability and methanol resistance to 20 % Pt/C at ORR. The ORR catalyst applied to the DLFC has the best electrical performance with an open circuit voltage (OCV) was 0.53 V and the maximum power density it could reach 95.29 mW m-2 when the catalyst was modified with THF. It is encouraging that the AL/FePc-NrGO catalyst has better-generated electricity performance than 20 % Pt/C. This work has provided a new idea for developing non-noble metal catalysts and studying direct biomass liquid fuel cells.

6.
Adv Sci (Weinh) ; 10(5): e2205087, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36529701

RESUMO

Non-noble metal catalysts now play a key role in promoting efficiently and economically catalytic reduction of CO2 into clean energy, which is an important strategy to ameliorate global warming and resource shortage issues. Here, a non-noble bimetallic catalyst of CoFe/Fe3 O4 nanoparticles is successfully designed with a core-shell structure that is well dispersed on the defect-rich carbon substrate for the hydrogenation of CO2 under mild conditions. The catalysts exhibit a high CO2 conversion activity with the rate of 30% and CO selectivity of 99%, and extremely robust stability without performance decay over 90 h in the reverse water gas shift reaction process. Notably, it is found that the reversible exsolution/dissolution of cobalt in the Fe3 O4 shell will lead to a dynamic and reversible deactivation/regeneration of the catalysts, accompanying by shell thickness breathing during the repeated cycles, via atomic structure study of the catalysts at different reaction stages. Combined with density functional theory calculations, the catalytic activity reversible regeneration mechanism is proposed. This work reveals the structure-property relationship for rational structure design of the advanced non-noble metallic catalyst materials with much improved performance.

7.
Environ Pollut ; 313: 120154, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36096264

RESUMO

The catalytic hydrogenolysis of a typical model compound of mulching film waste, polyethylene, was investigated as a potential way to improve economic efficiency of mulching film recycling. Nickel-based heterogeneous catalysts are proposed for polyethylene hydrogenolysis to produce liquid hydrocarbons. Among catalysts supported on various carriers, Ni/SiO2 catalyst shows the highest activity which may due to the interactions between nickel and silica with the formation of nickel phyllosilicate. As high as 81.18% total gasoline and diesel range hydrocarbon was obtained from the polyethylene hydrogenolysis at relatively mild condition of 280 °C, and 3 MPa cold hydrogen pressure. The result is comparable to what have been reported in previous studies using noble metal catalysts. The gasoline and diesel range hydrocarbon are n-alkanes with a distribution at a range of C4-C22. The gas products are primarily CH4 along with a small amount of C2H6 and C3H8. High yield of CH4 as much as 9.68% was observed for the cleavage of molecule occurs along the alkane chain.

8.
Chemosphere ; 301: 134518, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395257

RESUMO

Nitrophenols(NPs) are highly toxic compounds that occur in various industrial effluents. Herein, we investigated Cu nanoparticle-loaded cellulose nanofibril (CNF/PEI-Cu) aerogels as a catalyst for degrading 4-nitrophenol (4NP) in the wastewater. Non-noble metal based low-cost catalyst material and easily scalable preparation method make CNF/PEI-Cu aerogel as an appropriate catalyst for practical application in 4NP wastewater treatment. Our strategy to improve the loading amount of homogeneously distributed Cu nanoparticles was to functionalize a CNF aerogel using polyethylene imine (PEI), which can bind Cu2+ ions. Porous CNF aerogels with homogenously distributed 20-40 nm Cu nanoparticles were obtained by adsorbing Cu2+ ions and chemically reducing them to Cu metal. The FTIR, XRD, SEM, XPS and ICP-OES analysis were used to confirm the in-situ formation of Cu nanoparticles. In the presence of the CNF/PEI-Cu aerogels, 4NP was effectively reduced to 4-aminophenol (4AP) without loss of the Cu nanoparticles. The activation energy (Ea) and reaction rate constant (kapp) of the catalytic 4NP reduction reaction by the CNF/PEI2-Cu aerogels were calculated to be Ea = 39.56 kJ mol-1 and kapp = 0.770 min-1, respectively. The Ea is similar or even smaller than the Ea values of the corresponding reactions involving noble-metal catalysts, demonstrating that the CNF/PEI-Cu aerogels developed in the present study have strong potential as practical and economical catalysts.


Assuntos
Celulose , Nanopartículas Metálicas , Celulose/química , Cobre/química , Íons , Nanopartículas Metálicas/química , Metais , Nitrofenóis/química , Porosidade
9.
J Colloid Interface Sci ; 621: 195-204, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35461134

RESUMO

FeNC is the most promising material to replace the noble metal catalyst for cathodic oxygen reduction reaction in proton exchange membrane fuel cells (PEMFCs). However, the practical performance of FeNC catalyst is significantly limited by its low active site (Fe-N4) density. Herein, we propose to promote the formation of Fe-N4 active sites in FeNC catalyst by strengthening the interaction of N precursors and Fe precursors during the carbonization synthesis. In our approach, ionic liquid (IL, [EMIM][NTf2]) with high nitrogen content and good thermal stability is caged in the pores of Fe-ZIF-8 through the host-guest interactions. These interactions are critical for the preservation of Fe and N species and formation of active sites during the synthesis. The optimal catalyst developed with this approach (Fe0.05NC/10) has a high density of accessible Fe-N4 sites (1.88*1019 sites g-1). Therefore, in both acidic and alkaline media, Fe0.05NC/10 showed excellent ORR activity comparable to commercial Pt/C catalyst. Moreover, PEMFC performance with a peak power density of 300 mW cm-2 was demonstrated with Fe0.05NC/10 under H2/O2 conditions. The synthetic approach reported herein may be used for tailoring of advanced catalyst with high intrinsic activity.

10.
J Hazard Mater ; 431: 128528, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231814

RESUMO

A mesoporous LaCoO3 perovskite oxide (LaCoO3-Meso) with three-dimensionally ordered helical interwoven structure was synthesized by a nano-casting method using KIT-6 as the hard template. The obtained LaCoO3-Meso with high surface area was tested for its catalytic performance in the NOx storage and reduction (NSR) reaction and compared with a sample synthesized by the conventional sol-gel method. The LaCoO3-Meso showed a significant advantage for NOx storage, with a NOx storage capacity 2 times higher than the regular sample. LaCoO3-Meso also exhibited improved NSR catalytic performance in the 150-450 °C temperature range, especially within 350-400 °C, where the NOx conversion was raised for 40%. The results of X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements suggested the presence of a high concentration of oxygen defects on the LaCoO3-Meso surface. Further results provided by temperature programmed reduction and temperature programmed desorption indicated that the oxygen defects not only increase the amount of trapped NOx, but also improve the low-temperature redox performance of the catalyst. The lower stability of NOx species adsorbed on oxygen defects promotes the NOx release step in the NSR reaction and benefits the regeneration of storage sites.

11.
ACS Appl Mater Interfaces ; 13(50): 59834-59842, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894652

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) at ambient conditions is a promising route for ammonia (NH3) synthesis but still suffers from low activity and selectivity. Here, ultrafine Sn nanoparticles (NPs) grown on carbon blacks (SnSC/C) have been synthesized through a wet-chemical method using sodium citrate dehydrate as a stabilizing agent. Benefiting from the small sizes of Sn NPs, the SnSC/C catalyst exhibits excellent electrocatalytic performance for NRR with a high Faradaic efficiency of 22.76% and an NH3 yield rate of 17.28 µg h-1 mg-1 in the 0.1 M Na2SO4 electrolyte, outperforming many reported electrocatalysts for NRR under similar conditions. Density functional theory calculation results reveal that the potential-determining step on Sn NPs is the generation of NHNH* through simultaneous hydrogenation of N2* by a H* and a H+/e- pair via Langmuir-Hinshelwood plus Eley-Rideal mechanisms.

12.
J Hazard Mater ; 416: 125801, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492778

RESUMO

Herein, we demonstrate a single-step synthesis of simple copper-doped borophosphate glasses and their unusual use for catalytic reduction of nitro groups from the aromatic nitro compounds. The copper-doped glasses were evaluated as an affordable heterogeneous catalytic glass-based material for the reduction of 4-nitrophenol by sodium borohydride. The glass matrix acts as a host and support material for in situ self-growth of zero-valent copper (Cu) nanoparticles (NPs) on the glass surface. Thus, zero-valent CuNPs are produced in situ on the glass surface that is accomplished by the interaction of copper ions with hydride ions. Using an intrinsic reaction kinetic constant, we find a catalytic activity of 0.144 L s-1 g-1 for a glass-based catalyst doped with a non-noble metal, which is an order of magnitude higher when compared to the values observed elsewhere. Furthermore, the reuse of glass catalyst after six successive cycles demonstrates an outstanding performance compared to that of the parent material. A mathematical model based on the Langmuir-Hinshelwood mechanism related to an empirical growth rate of the zero-valent CuNPs was proposed to describe the kinetic of the 4-nitrophenol catalytic hydrogenation.

13.
J Hazard Mater ; 396: 122750, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32339880

RESUMO

Low-temperature oxidative degradation of formaldehyde (HCHO) using non-noble metal catalysts is challenging. Herein, novel manganese dioxide (MnO2)/N-doped carbon nanotubes (NCNT) composites were prepared with varying MnO2 content. The surface properties and morphologies were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscope (TEM). Comparing with MnO2/carbon nanotubes (CNTs) catalyst, the 40% MnO2/NCNT exhibited much better activity and selectivity for HCHO oxidation, mineralizing 95% of HCHO (at 100 ppm) into CO2 at 30 °C at a gas hourly space velocity (GHSV) of 30,000 mL h-1  g-1. Density functional theory (DFT) calculation was used to analyze the difference in the catalytic activity of MnO2 with CNTs and NCNT carrier. It was confirmed that the oxygen on NCNT was more active than CNTs, which facilitated the regeneration of MnO2. This resulted in remarkably boosted activity for HCHO oxidation. The present work thus exploited an inexpensive approach to enhance the catalytic activity of transition metal oxides via depositing them on a suitable support.

14.
ChemSusChem ; 13(12): 3222-3229, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32196943

RESUMO

Electrochemical water splitting remains a frontier research topic in the quest to develop artificial photosynthetic systems by using noble metal-free and sustainable catalysts. Herein, a highly crystalline CuSe has been employed as active electrodes for overall water splitting (OWS) in alkaline media. The pure-phase klockmannite CuSe deposited on highly conducting nickel foam (NF) electrodes by electrophoretic deposition (EPD) displayed an overpotential of merely 297 mV for the reaction of oxygen evolution (OER) at a current density of 10 mA cm-2 whereas an overpotential of 162 mV was attained for the hydrogen evolution reaction (HER) at the same current density, superseding the Cu-based as well as the state-of-the-art RuO2 and IrO2 catalysts. The bifunctional behavior of the catalyst has successfully been utilized to fabricate an overall water-splitting device, which exhibits a low cell voltage (1.68 V) with long-term stability. Post-catalytic analyses of the catalyst by ex-situ microscopic, spectroscopic, and analytical methods confirm that under both OER and HER conditions, the crystalline and conductive CuSe behaves as an electro(pre)catalyst forming a highly reactive in situ crystalline Cu(OH)2 overlayer (electro(post)catalyst), which facilitates oxygen (O2 ) evolution, and an amorphous Cu(OH)2 /CuOx active surface for hydrogen (H2 ) evolution. The present study demonstrates a distinct approach to produce highly active copper-based catalysts starting from copper chalcogenides and could be used as a basis to enhance the performance in durable bifunctional overall water splitting.

15.
ACS Appl Mater Interfaces ; 12(29): 32842-32850, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589022

RESUMO

Developing highly efficient non-noble metal catalysts for the cathode of fuel cells is an urgent requirement for reducing the cost. Although the intrinsic activity of non-noble metal materials has been greatly improved, the fuel cell performance is also determined by the mass transfer within the catalyst layer (CL), particularly at high current density. Electrochemical impedance spectroscopy (EIS) combined with rotating disk electrode (RDE) analysis is a powerful tool to quantitatively analyze the influence of the structural properties on CL performance. Here, Co/N/C CLs with gradient pore structures are constructed based on the controllable synthesis of zeolitic imidazolate framework (ZIF)-derived catalyst. The influences of the carbon support, active site, and catalyst loading are comprehensively studied by EIS in different regions (kinetic and mixed-diffusion). The results indicate that a high micro-/mesopore ratio is beneficial to increasing the density of active sites while reducing the mass-transfer efficiency. Inversely, abundant mesopores promote mass transfer, but they result in low active site density. By carefully adjusting the pore structure and chemical composition of the ZIF-derived catalyst, the Co/N/C CL shows a low mass-transfer resistance (95.5 Ω at 0.75 V vs RHE). This work demonstrates the importance of mass transfer within the fuel cell CL, beyond seeking only high activity.

16.
ACS Appl Mater Interfaces ; 10(34): 28664-28671, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30079727

RESUMO

Recent progress in anion-exchange membranes has evoked increasing interests in alkaline polymer fuel cells (APFCs). A large body of recent research has demonstrated attractive activity of Fe-N macrocycle complexes as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline media. To be a substitute for Pt in APFCs, however, most of the macrocycle molecules remain largely unsatisfactory in both of the catalytic activity and durability. Herein, we show that a one-pot microwave conjugation results in a polymerized iron-phthalocyanine (pFePc) which exhibits extremely high ORR performance, showing activity much better than that of the FePc monomer and 20 wt % Pt/C, and similar to that of the 60 wt % Pt/C under the same catalyst loading. Furthermore, we proposed an edge-closing strategy to significantly enhance the stability of the pFePc catalyst in alkaline media by eliminating the edge anhydride groups. Using the edge-closed pFePc as the cathode catalyst in APFC, a power density as high as 452 mW·cm-2 is achieved, which is among the best performance of non-noble metal catalyst-based APFCs so far reported.

17.
ACS Appl Mater Interfaces ; 8(48): 32875-32886, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934155

RESUMO

The catalytic mechanism and the nature of active sites are revealed for the oxygen reduction reaction (ORR) with new non-noble-metal nitrogen-doped carbon-supported transition-metal catalysts (metal-N-C catalyst). Specifically, new nitrogen-doped carbon-supported cobalt catalysts (Co-N-C catalysts) are made by pyrolyzing various ratios of the nitrogen-atom rich heterocycle compound, 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-dca) and cobalt salt (Co(NO3)2). The ORR activity (JK at 0.8 V vs RHE, in 0.1 M KOH solution) of a typical catalyst in this family, Co15-N-C800, is 8.25 mA/mg, which is much higher than the ORR activity values of N-C catalysts (0.41 mA/mg). The active site in the catalyst is found to be the Co-N species, which is most likely in the form of Co2N. Metallic cobalt (Co) particles, Co3C species, and N-C species are not catalytically active sites, nor do these moieties interact with the Co-N active sites during the catalysis of the ORR. Increasing the Co salt content during the synthesis favors the formation of Co-N active sites in the final catalyst. Higher pyrolysis temperatures (e.g., a temperature higher than 800 °C) do not favor the formation of the Co-N active sites, but cause the formed Co-N active sites to decompose, which, therefore, leads to a lower catalytic activity. This reveals that the control of the parameters that affect the final structure is critical to catalyst performance and, therefore, the effective development of high-performance heteroatom-doped non-noble-metal ORR catalysts.

18.
J Phys Chem Lett ; 5(21): 3750-6, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278745

RESUMO

The applicability of analyzing by Mößbauer spectroscopy the structural changes of Fe-N-C catalysts that have been tested at the cathode of membrane electrode assemblies in proton exchange membrane (PEM) fuel cells is demonstrated. The Mößbauer characterization of powders of the same catalysts was recently described in our previous publication. A possible change of the iron species upon testing in fuel cell was investigated here by Mößbauer spectroscopy, energy-dispersive X-ray cross-sectional imaging, and neutron activation analysis. Our results show that the absorption probability of γ rays by the iron nuclei in Fe-N-C is strongly affected by the presence of Nafion and water content. A detailed investigation of the effect of an oxidizing treatment (1.2 V) of the non-noble cathode in PEM fuel cell indicates that the observed activity decay is mainly attributable to carbon oxidation causing a leaching of active iron sites hosted in the carbon matrix.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa