Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lab Anim ; 56(2): 157-164, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34407659

RESUMO

Open chest surgery in rodents requires assisted breathing and the most common approach for ventilation is via an endotracheal tube. Even with well-trained operators the endotracheal intubation is technically challenging and may lead to prolonged procedures and endotracheal intubation complications. Nose cone ventilation is a simpler procedure compared to endotracheal intubation and has the potential to improve animal welfare by reducing procedure time and endotracheal intubation associated complications. Rats are obligate nose breathers, and therefore replacing intubation with air supply from a nose cone would be an advantage and a more natural way of breathing. Here, we compared the values for several blood gases, blood pressure and heart rate from rats that were nose cone ventilated with rats that underwent endotracheal intubation at 12 timepoints equally distributed across three surgical stages: baseline, open chest and closed chest. Throughout the monitoring period the hemodynamic and blood gas values for both methods of ventilation were within published, normal ranges for the rat and were biologically equivalent (equivalence test p value ≤ 0.05). Our data showed that nose cone ventilation-maintained blood gases and hemodynamic homeostasis equivalent to endotracheal intubation. Nose cone ventilation can be recommended as an alternative to endotracheal intubation in rat experiments where investigators require airway control.


Assuntos
Manuseio das Vias Aéreas , Intubação Intratraqueal , Animais , Gasometria , Gases , Hemodinâmica , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Ratos
2.
Materials (Basel) ; 10(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772982

RESUMO

A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa