Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Clin Immunol ; 261: 110165, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423196

RESUMO

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Assuntos
Imunodeficiência de Variável Comum , Irmãos , Masculino , Adulto , Humanos , Pessoa de Meia-Idade , Haploinsuficiência/genética , Variações do Número de Cópias de DNA , NF-kappa B/genética , Imunodeficiência de Variável Comum/genética , Sequências Reguladoras de Ácido Nucleico , Subunidade p50 de NF-kappa B/genética
2.
Clin Immunol ; 266: 110327, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053866

RESUMO

This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Esclerose Múltipla , Fator 88 de Diferenciação Mieloide , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Feminino , Masculino , Adulto , Esclerose Múltipla/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Fator 88 de Diferenciação Mieloide/genética , Pessoa de Meia-Idade , Estudos Transversais , NF-kappa B/metabolismo , NF-kappa B/genética , Recidiva , Estudos Retrospectivos , Metilação de DNA , Biomarcadores/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
3.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837511

RESUMO

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Assuntos
Movimento Celular , Proliferação de Células , Quimiocina CCL2 , Células Epiteliais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Progressão da Doença , Transdução de Sinais/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Esôfago/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
4.
Curr Issues Mol Biol ; 45(9): 7653-7667, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754267

RESUMO

A study was conducted to investigate the effects of different doses of 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ) on motor coordination scores, brain tissue morphology, the expression of tyrosine hydroxylase, the severity of oxidative stress parameters, the levels of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) factor, and the inflammatory response in rats during the development of rotenone-induced Parkinsonism. The findings indicate that HTHQ, with its antioxidant attributes, reduced the levels of 8-isoprostane, lipid oxidation products, and protein oxidation products. The decrease in oxidative stress due to HTHQ led to a reduction in the mRNA content of proinflammatory cytokines and myeloperoxidase activity, accompanying the drop in the expression of the factor NF-κB. These alterations promoted an improvement in motor coordination scores and increased tyrosine hydroxylase levels, whereas histopathological changes in the brain tissue of the experimental animals were attenuated. HTHQ exhibited greater effectiveness than the comparative drug rasagiline based on the majority of variables.

5.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615638

RESUMO

Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.


Assuntos
Antineoplásicos , Neoplasias , NF-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Antineoplásicos/farmacologia , Benzodiazepinonas/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo
6.
Biol Pharm Bull ; 45(10): 1564-1571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184517

RESUMO

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a potential target for inflammatory-breast cancer treatment as it participates in its pathogenesis, such as tumor initiation, progression, survival, metastasis, and recurrence. In this study, we aimed to discover a novel anti-cancer treatment from natural products by targeting NF-κB activity. Using the 4T1-NFκB-luciferase reporter cell line, we tested three pregnane glycosides extracted from the herb Caralluma tuberculata and discovered that Russelioside A markedly suppressed NF-κB activity in breast cancer. Russelioside A inhibited NF-κB (p65) transcriptional activity and its phosphorylation. Following NF-κB inhibition, Russelioside A exerted anti-proliferative and anti-metastatic effects in breast cancer cells in vitro. Moreover, it inhibited the NF-κB constitutive expression of downstream pathways, such as VEGF-b, MMP-9, and IL-6 in 4T1 cells. In addition, it reduced the metastatic capacity in a 4T1 breast cancer model in vivo. Collectively, our conclusions reveal that Russelioside A is an attractive natural compound for treating triple-negative breast cancer growth and metastasis through regulating NF-κB activation.


Assuntos
Apocynaceae , Produtos Biológicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Apocynaceae/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Humanos , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz , NF-kappa B/metabolismo , Pregnanos/farmacologia , Pregnanos/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fator B de Crescimento do Endotélio Vascular
7.
Allergol Immunopathol (Madr) ; 50(3): 106-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527663

RESUMO

BACKGROUND: Although early diagnosis, antibiotic therapies, corticosteroid application, and health care services are conventional managements for pneumonia, antibiotic resistance and adverse reactions remain as limitations for pneumonia treatment. OBJECTIVES: The study attempted to evaluate the potential role of EPSTI1 against pneumonia and reveal its underlying mechanism. METHODS: Lipopolysaccharide (LPS) (5, 10, and 20 µg/mL) was applied in WI-38 cells to establish the in vitro pneumonia model. Knockdown of epithelial-stromal interaction 1 (EPSTI1) was performed by transfection with EPSTI1 siRNA (siEPSTI1) into LPS-treated cells. Cell Counting Kit-8 assays were implemented to measure cell viability, and apoptotic cells were detected using flow cytometry. Interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) were quantified using enzyme-linked immunosorbent assay (ELISA). Immunoblotting and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to quantify EPSTI1 expression, and proteins related to nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB) signaling, including p-p65, p65, p-IκBα, and IκBα. RESULTS: EPSTI1 was highly expressed in LPS-treated WI-38 cells. Cell apoptosis was promoted, and cell viability was inhibited after being exposed to LPS. Besides, IL-1ß, IL-6, and TNF-α were dramatically upregulated. Knockdown of EPSTI1 restored cell viability, inhibited cell apoptosis, and attenuated expressions of proinflammatory factors. Additionally, knockdown of EPSTI1 visibly decreased the increased ratios of p-p65/p65 and p-IκBα/IκBα induced by LPS. Knockdown of EPSTI1 alleviated inflammatory injury through the inactivation of the NF-κB pathway. CONCLUSIONS: These results provided promising management in preventing pneumonia in patients.


Assuntos
NF-kappa B , Proteínas de Neoplasias , Pneumonia , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Proteínas de Neoplasias/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886907

RESUMO

The functionally important NF-κB1 promoter polymorphism (-94ins/delATTG) significantly shapes inflammation and impacts the outcome of sepsis. However, exploratory studies elucidating the molecular link of this genotype-dependent pattern are lacking. Accordingly, we analyzed lipopolysaccharide-stimulated peripheral blood mononuclear cells from both healthy volunteers (n = 20) and septic patients (n = 10). All individuals were genotyped for the -94ins/delATTG NF-κB1 promoter polymorphism. We found a diminished nuclear activity of the NF-κB subunit p50 in ID/DD genotypes after 48 h of lipopolysaccharide stimulation compared to II genotypes (p = 0.025). This was associated with higher TNF-α (p = 0.005) and interleukin 6 concentrations (p = 0.014) and an increased production of mitochondrial radical oxygen species in ID/DD genotypes (p = 0.001). Although ID/DD genotypes showed enhanced activation of mitochondrial biogenesis, they still had a significantly diminished cellular ATP content (p = 0.046) and lower mtDNA copy numbers (p = 0.010) compared to II genotypes. Strikingly, these findings were mirrored in peripheral blood mononuclear cells taken from septic patients. Our results emphasize the crucial aspect of considering NF-κB subunits in sepsis. We showed here that the deletion allele of the NF-κB1 (-94ins/delATTG) polymorphism was associated with the lower nuclear activity of subunit p50, which, in turn, was associated with aggravated inflammation and mitochondrial dysfunction.


Assuntos
NF-kappa B , Sepse , Alelos , Humanos , Inflamação/genética , Leucócitos Mononucleares , Lipopolissacarídeos , NF-kappa B/genética , Subunidade p50 de NF-kappa B/genética , Sepse/genética
9.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269704

RESUMO

Interleukin-1 receptor-associated kinase-3 (IRAK3) is a critical checkpoint molecule of inflammatory responses in the innate immune system. The pseudokinase domain of IRAK3 contains a guanylate cyclase (GC) centre that generates small amounts of cyclic guanosine monophosphate (cGMP) associated with IRAK3 functions in inflammation. However, the mechanisms of IRAK3 actions are poorly understood. The effects of low cGMP levels on inflammation are unknown, therefore a dose-response effect of cGMP on inflammatory markers was assessed in THP-1 monocytes challenged with lipopolysaccharide (LPS). Sub-nanomolar concentrations of membrane permeable 8-Br-cGMP reduced LPS-induced NFκB activity, IL-6 and TNF-α cytokine levels. Pharmacologically upregulating cellular cGMP levels using a nitric oxide donor reduced cytokine secretion. Downregulating cellular cGMP using a soluble GC inhibitor increased cytokine levels. Knocking down IRAK3 in THP-1 cells revealed that unlike the wild type cells, 8-Br-cGMP did not suppress inflammatory responses. Complementation of IRAK3 knockdown cells with wild type IRAK3 suppressed cytokine production while complementation with an IRAK3 mutant at GC centre only partially restored this function. Together these findings indicate low levels of cGMP form a critical component in suppressing cytokine production and in mediating IRAK3 action, and this may be via a cGMP enriched nanodomain formed by IRAK3 itself.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Monócitos , GMP Cíclico , Citocinas , Guanilato Ciclase , Humanos , Inflamação , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos , Óxido Nítrico
10.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209068

RESUMO

It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.


Assuntos
Ácido Ascórbico/química , Fator 2 Relacionado a NF-E2/metabolismo , Niacinamida/administração & dosagem , Polidesoxirribonucleotídeos/administração & dosagem , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Biomarcadores , Elasticidade , Expressão Gênica , Imuno-Histoquímica , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Melaninas/biossíntese , Fator 2 Relacionado a NF-E2/genética , Raios Ultravioleta
11.
Cell Commun Signal ; 19(1): 45, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882943

RESUMO

Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling. Video Abstract.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Humanos , Modelos Biológicos , Fosforilação
12.
J Allergy Clin Immunol ; 145(1): 379-390, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622687

RESUMO

BACKGROUND: IκBζ plays a key role in psoriasis by mediating IL-17A-driven effects, but the molecular mechanism by which IL-17A regulates IκBζ expression is not clarified. OBJECTIVE: We sought to explore the molecular transformation in patients with psoriasis during anti-IL-17A (secukinumab) treatment with a focus on IκBζ. METHODS: The study was an open-label, single-arm, single-center secukinumab treatment study that included 14 patients with plaque psoriasis. Skin biopsy specimens and blood samples were collected on days 0, 4, 14, 42, and 84 and processed for microarray gene expression analysis. Furthermore, in vitro experiments with human keratinocytes and synovial fibroblasts were conducted. RESULTS: Secukinumab improved clinical scores and histologic psoriasis features. Moreover, secukinumab altered the skin transcriptome. The major transcriptional shift appeared between day 14 and day 42 after treatment initiation, although 80 genes were differentially expressed already at day 4. Expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor (IκB) ζ (NFKBIZ, the gene encoding IκBζ) was reduced already after 4 days of treatment in the skin. NFKBIZ expression correlated to Psoriasis Area and Severity Index score, and NFKBIZ mRNA levels in the skin decreased during anti-IL-17A treatment. Moreover, specific NFKBIZ signature genes were significantly altered during anti-IL-17A treatment. Finally, we identified NF-κB activator 1 (Act1), p38 mitogen-activated protein kinase (MAPK), Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) as key signaling pathways in NFKBIZ/IκBζ regulation. CONCLUSION: Our results define a crucial role for IκBζ in the antipsoriatic effect of secukinumab. Because IκBζ signature genes were regulated already after 4 days of treatment, this strongly indicates that IκBζ plays a crucial role in the antipsoriatic effects mediated by anti-IL-17A treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Psoríase/tratamento farmacológico , Adulto , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Pessoa de Meia-Idade , Psoríase/imunologia , Psoríase/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
13.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204438

RESUMO

Hepatitis C virus (HCV) is associated with various liver diseases. Chronic HCV infection is characterized by an abnormal host immune response. Therefore, it is speculated that to suppress HCV, a well-regulated host immune response is necessary. 2-O-methylhonokiol was identified by the screening of anti-HCV compounds using Renilla luciferase assay in Huh 7.5/Con 1 genotype 1b replicon cells. Here, we investigated the mechanism by which 2-O-methylhonokiol treatment inhibits HCV replication using real-time PCR. Our data shows that treatment with 2-O-methylhonokiol activated innate immune responses via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. Additionally, the immunoprecipitation result shows that treatment with 2-O-methylhonokiol augmented tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) by preventing p62 from binding to TRAF6, resulting in reduced autophagy caused by HCV. Finally, we reproduced our data with the conditioned media from 2-O-methylhonokiol-treated cells. These findings strongly suggest that 2-O-methylhonokiol enhances the host immune response and suppresses HCV replication via TRAF6-mediated NF-kB activation.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Interações Hospedeiro-Patógeno , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Replicação Viral , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Células Cultivadas , Hepatite C/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Modelos Biológicos , Estrutura Molecular
14.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445612

RESUMO

Prostate cancer is a common cause of death worldwide. Here, we isolated cancer stem cells (CSCs) from four adenocarcinomas of the prostate (Gleason scores from 3 + 3 up to 4 + 5). CSCs were characterized by the expression of the stem cell markers TWIST, the epithelial cell adhesion molecule (EPCAM), the transcription factors SNAI1 (SNAIL) and SNAI2 (SLUG) and cancer markers such as CD44 and prominin-1 (CD133). All investigated CSC populations contained a fraction highly positive for aldehyde dehydrogenase (ALDH) function and displayed robust expressions of programmed cell death 1 (PD-1) ligands. Furthermore, we investigated immunotherapeutic approaches but had no success even with the clinically used PD-1 inhibitor pembrolizumab. In addition, we studied another death-inducing pathway via interferon gamma signaling and detected high-level upregulations of human leukocyte antigen A (HLA-A) and beta 2-microglobulin (B2M) with only moderate killing efficacy. To examine further killing mechanisms in prostate cancer stem cells (PCSCs), we analyzed NF-κB signaling. Surprisingly, two patient-specific populations of PCSCs were found: one with canonical NF-κB signaling and another one with blunted NF-κB activation, which can be efficiently killed by tumor necrosis factor (TNF). Thus, culturing of PCSCs and analysis of respective NF-κB induction potency after surgery might be a powerful tool for optimizing patient-specific treatment options, such as the use of TNF-inducing chemotherapeutics and/or NF-κB inhibitors.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , NF-kappa B/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
15.
J Allergy Clin Immunol ; 143(2): 507-527, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075154

RESUMO

Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αß T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.


Assuntos
Doenças Transmissíveis/genética , Doenças Genéticas Inatas/imunologia , Imunidade Inata/genética , Leucócitos/fisiologia , Mutação/genética , Animais , Doenças Transmissíveis/imunologia , Humanos , Interferons/metabolismo , NF-kappa B/genética , Fagocitose , Transdução de Sinais , Receptores Toll-Like/genética
16.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321885

RESUMO

Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/toxicidade , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , NF-kappa B/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Etanol/farmacocinética , Humanos , Fígado/efeitos dos fármacos , Transdução de Sinais
17.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291656

RESUMO

Phorbol 12-myristate 13-acetate (PMA) is a potent tumor promoter and highly inflammatory in nature. Here, we investigated the toxic effects of PMA on different model system. PMA (10 µg) caused chromosomal aberrations on the Allium cepa root tip and induced mitotic dysfunction. Similarly, PMA caused embryonic and larval deformities and a plummeted survivability rate on zebrafish embryo in a dose-dependent manner. Persistently, PMA treatment on immortalized human keratinocyte human keratinocyte (HaCaT) cells caused massive inflammatory rush at 4 h and a drop in cell survivability at 24 h. Concomitantly, we replicated a cutaneous inflammation similar to human psoriasis induced by PMA. Herein, we used tangeretin (TAN), as an antagonist to counteract the inflammatory response. Results from an in vivo experiment indicated that TAN (10 and 30 mg/kg) significantly inhibited PMA stimulated epidermal hyperplasia and intra-epidermal neutrophilic abscesses. In addition, its treatment effectively neutralized PMA induced elevated reactive oxygen species (ROS) generation on in vitro and in vivo systems, promoting antioxidant response. The association of hypoxia-inducible factor 1-alpha (HIF-1α)-nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) crosstalk triggered by PMA enhanced PKCα-ERK1/2-NF-κB pathway; its activation was also significantly counteracted after TAN treatment. Conclusively, we demonstrated TAN inhibited the nuclear translocation of HIF-1α and NF-κB p65. Collectively, TAN treatment ameliorated PMA incited malignant inflammatory response by remodeling the cutaneous microenvironment.


Assuntos
Flavonas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/efeitos adversos , Animais , Antioxidantes , Biomarcadores , Linhagem Celular Transformada , Anormalidades Congênitas , Desenvolvimento Embrionário/genética , Epiderme , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Peroxidação de Lipídeos , Cebolas/efeitos dos fármacos , Cebolas/genética , Cebolas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
18.
Saudi Pharm J ; 28(12): 1777-1790, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424267

RESUMO

Millettia peguensis, popular for its ethnopharmacological uses, was employed to evaluate its different pharmacological properties in this study. The analgesic studies of the plant have been performed by acetic acid-induced writhing and formalin-induced licking tests respectively, whereas the antidiarrheal experiment was done by castor oil-induced diarrheal test. Besides, antioxidant, cytotoxic, antimicrobial, thrombolytic evaluations were performed by DPPH scavenging with phenol content determination, brine shrimp lethality, disc diffusion and clot lysis methods respectively. Moreover, in silico study of the phytoconstituents was carried out by molecular docking and ADME/T analysis. The methanol extract of Millettia peguensis (MEMP) revealed significant biological activity in the analgesic and antidiarrheal test (p < 0.001) compared to the standards. Antioxidant assay displayed promising IC50 values (15.96 µg/mL) with the total phenol content (65.27 ± 1.24 mg GAE/g). In the cytotoxicity study, the LC50 value was found to be 1.094 µg/mL. Besides, MEMP was highly sensitive to the bacteria but less liable to clot lysis. Furthermore, phytoconstituents exposed potential binding affinity towards the selected receptors, whereas the ADME/T properties indicated the drug likeliness of the plant. The outcomes of these findings suggest the therapeutic potential of this plant against pain, diarrhea, inflammation, and tissue toxicity.

19.
Rep Pract Oncol Radiother ; 25(3): 422-427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372882

RESUMO

Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.

20.
Rep Pract Oncol Radiother ; 25(5): 808-819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884453

RESUMO

miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa