RESUMO
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Assuntos
Centrômero/genética , Cromossomos Fúngicos/genética , Mitose , Saccharomyces cerevisiae/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismoRESUMO
Nucleosome organization influences gene activity by controlling DNA accessibility to transcription machinery. Here, we develop a chemical biology approach to determine mammalian nucleosome positions genome-wide. We uncovered surprising features of nucleosome organization in mouse embryonic stem cells. In contrast to the prevailing model, we observe that for nearly all mouse genes, a class of fragile nucleosomes occupies previously designated nucleosome-depleted regions around transcription start sites and transcription termination sites. We show that nucleosomes occupy DNA targets for a subset of DNA-binding proteins, including CCCTC-binding factor (CTCF) and pluripotency factors. Furthermore, we provide evidence that promoter-proximal nucleosomes, with the +1 nucleosome in particular, contribute to the pausing of RNA polymerase II. Lastly, we find a characteristic preference for nucleosomes at exon-intron junctions. Taken together, we establish an accurate method for defining the nucleosome landscape and provide a valuable resource for studying nucleosome-mediated gene regulation in mammalian cells.
Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/genética , Animais , Fator de Ligação a CCCTC , Estudo de Associação Genômica Ampla , Camundongos , RNA Polimerase II/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição , Transcrição GênicaRESUMO
SUV420H1 di- and tri-methylates histone H4 lysine 20 (H4K20me2/H4K20me3) and plays crucial roles in DNA replication, repair, and heterochromatin formation. It is dysregulated in several cancers. Many of these processes were linked to its catalytic activity. However, deletion and inhibition of SUV420H1 have shown distinct phenotypes, suggesting that the enzyme likely has uncharacterized non-catalytic activities. Our cryoelectron microscopy (cryo-EM), biochemical, biophysical, and cellular analyses reveal how SUV420H1 recognizes its nucleosome substrates, and how histone variant H2A.Z stimulates its catalytic activity. SUV420H1 binding to nucleosomes causes a dramatic detachment of nucleosomal DNA from the histone octamer, which is a non-catalytic activity. We hypothesize that this regulates the accessibility of large macromolecular complexes to chromatin. We show that SUV420H1 can promote chromatin condensation, another non-catalytic activity that we speculate is needed for its heterochromatin functions. Together, our studies uncover and characterize the catalytic and non-catalytic mechanisms of SUV420H1, a key histone methyltransferase that plays an essential role in genomic stability.
Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Cromatina/genética , Microscopia Crioeletrônica , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina , Nucleossomos/genética , HumanosRESUMO
The BRCA1-BARD1 complex directs the DNA double-strand break (DSB) repair pathway choice to error-free homologous recombination (HR) during the S-G2 stages. Targeting BRCA1-BARD1 to DSB-proximal sites requires BARD1-mediated nucleosome interaction and histone mark recognition. Here, we report the cryo-EM structure of BARD1 bound to a ubiquitinated nucleosome core particle (NCPUb) at 3.1 Å resolution and illustrate how BARD1 simultaneously recognizes the DNA damage-induced mark H2AK15ub and DNA replication-associated mark H4K20me0 on the nucleosome. In vitro and in vivo analyses reveal that the BARD1-NCPUb complex is stabilized by BARD1-nucleosome interaction, BARD1-ubiquitin interaction, and BARD1 ARD domain-BARD1 BRCT domain interaction, and abrogating these interactions is detrimental to HR activity. We further identify multiple disease-causing BARD1 mutations that disrupt BARD1-NCPUb interactions and hence impair HR. Together, this study elucidates the mechanism of BRCA1-BARD1 complex recruitment and retention by DSB-flanking nucleosomes and sheds important light on cancer therapeutic avenues.
Assuntos
Proteína BRCA1/química , Histonas/química , Complexos Multiproteicos/química , Nucleossomos/química , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Proteínas de Xenopus/química , Animais , Proteína BRCA1/genética , Histonas/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Nucleossomos/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas de Xenopus/genética , Xenopus laevisRESUMO
T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.
Assuntos
Linhagem da Célula , Epigenômica , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 1 de Transcrição de Linfócitos T/fisiologia , Linfócitos T/fisiologia , Animais , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Camundongos , Células NIH 3T3 , Transcrição GênicaRESUMO
Transcription has a mechanical component, as the translocation of the transcription machinery or RNA polymerase (RNAP) on DNA or chromatin is dynamically coupled to the chromatin torsion. This posits chromatin mechanics as a possible regulator of eukaryotic transcription, however, the modes and mechanisms of this regulation are elusive. Here, we first take a statistical mechanics approach to model the torsional response of topology-constrained chromatin. Our model recapitulates the experimentally observed weaker torsional stiffness of chromatin compared to bare DNA and proposes structural transitions of nucleosomes into chirally distinct states as the driver of the contrasting torsional mechanics. Coupling chromatin mechanics with RNAP translocation in stochastic simulations, we reveal a complex interplay of DNA supercoiling and nucleosome dynamics in governing RNAP velocity. Nucleosomes play a dual role in controlling the transcription dynamics. The steric barrier aspect of nucleosomes in the gene body counteracts transcription via hindering RNAP motion, whereas the chiral transitions facilitate RNAP motion via driving a low restoring torque upon twisting the DNA. While nucleosomes with low dissociation rates are typically transcriptionally repressive, highly dynamic nucleosomes offer less of a steric barrier and enhance the transcription elongation dynamics of weakly transcribed genes via buffering DNA twist. We use the model to predict transcription-dependent levels of DNA supercoiling in segments of the budding yeast genome that are in accord with available experimental data. The model unveils a paradigm of DNA supercoiling-mediated interaction between genes and makes testable predictions that will guide experimental design.
Assuntos
RNA Polimerases Dirigidas por DNA , Nucleossomos , Transcrição Gênica , Nucleossomos/metabolismo , Nucleossomos/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , DNA/metabolismo , DNA/química , DNA/genética , Cromatina/metabolismo , Cromatina/genética , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.
Assuntos
Paramecium , Paramecium/genética , Paramecium/metabolismo , Elementos de DNA Transponíveis/genética , Montagem e Desmontagem da Cromatina , Nucleossomos/genética , DNA de Protozoário/genética , DNA de Protozoário/metabolismoRESUMO
Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing â¼30% of Gcn4-binding motifs. Surprisingly, only â¼40% of the bound sites are in promoters, of which only â¼60% activate transcription, indicating extensive negative control over Gcn4 function. Most of the remaining â¼300 Gcn4-bound sites are within coding sequences (CDSs), with â¼75 representing the only bound sites near Gcn4-induced genes. Many such unconventional sites map between divergent antisense and sub-genic sense transcripts induced within CDSs adjacent to induced TBP peaks, consistent with Gcn4 activation of cryptic bidirectional internal promoters. Mutational analysis confirms that Gcn4 sites within CDSs can activate sub-genic and full-length transcripts from the same or adjacent genes, showing that functional Gcn4 binding is not confined to promoters. Our results show that internal promoters can be regulated by an activator that functions at conventional 5'-positioned promoters.
Assuntos
Região 5'-Flanqueadora , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , DNA Fúngico/genética , Histonas/genética , Histonas/metabolismo , Mutação , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The chromatin-modifying enzyme, Polycomb Repressive Complex 2 (PRC2), deposits the H3K27me3 epigenetic mark to negatively regulate expression at numerous target genes, and this activity has been implicated in embryonic development, cell differentiation, and various cancers. A biological role for RNA binding in regulating PRC2 histone methyltransferase activity is generally accepted, but the nature and mechanism of this relationship remains an area of active investigation. Notably, many in vitro studies demonstrate that RNA inhibits PRC2 activity on nucleosomes through mutually antagonistic binding, while some in vivo studies indicate that PRC2's RNA-binding activity is critical for facilitating its biological function(s). Here we use biochemical, biophysical, and computational approaches to interrogate PRC2's RNA and DNA-binding kinetics. Our findings demonstrate that PRC2-polynucleotide dissociation rates are dependent on the concentration of free ligand, indicating the potential for direct transfer between nucleic acid ligands without a free-enzyme intermediate. Direct transfer explains the variation in previously reported dissociation kinetics, allows reconciliation of prior in vitro and in vivo studies, and expands the potential mechanisms of RNA-mediated PRC2 regulation. Moreover, simulations indicate that such a direct transfer mechanism could be obligatory for RNA to recruit proteins to chromatin.
Assuntos
Cromatina , Complexo Repressor Polycomb 2 , Cromatina/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA/genética , RNA/metabolismo , DNA/genética , DNA/metabolismo , Nucleossomos/genética , Ligação ProteicaRESUMO
Sirtuin 2 (Sirt2) is a member of the sirtuin family of NAD-dependent lysine deacylases and plays important roles in regulation of the cell cycle and gene expression. As a nucleocytoplasmic deacetylase, Sirt2 has been shown to target both histone and nonhistone acetylated protein substrates. The central catalytic domain of Sirt2 is flanked by flexible N and C termini, which vary in length and composition with alternative splicing. These termini are further subject to posttranslational modifications including phosphorylation. Here, we investigate the function of the N and C termini on deacetylation of nuclear substrates by Sirt2. Remarkably, we find that the C terminus autoinhibits deacetylation, while the N terminus enhances deacetylation of proteins and peptides, but not nucleosomes-a chromatin model substrate. Using protein semisynthesis, we characterize the effect of cell cycle-linked N-terminal phosphorylation at two major phosphorylation sites (Ser23/Ser25) and find that these further enhance protein/peptide deacetylation, with no effect on nucleosome deacetylation. Additionally, we find that VRK1, an established binding partner of both Sirt2 and nucleosomes, can stimulate deacetylation of nucleosomes by Sirt2, likely through an electrostatic mechanism. Taken together, these findings reveal multiple mechanisms regulating the activity of Sirt2, which allow for a broad range of activities across its multiple biological roles.
Assuntos
Nucleossomos , Sirtuína 2 , Sirtuína 2/metabolismo , Sirtuína 2/genética , Humanos , Nucleossomos/metabolismo , Fosforilação , Acetilação , Processamento de Proteína Pós-Traducional , Ciclo CelularRESUMO
Micrococcal nuclease (MNase) is commonly used to map nucleosomes genome-wide, but nucleosome maps are affected by the degree of digestion. It has been proposed that many yeast promoters are not nucleosome-free but instead occupied by easily digested, unstable, "fragile" nucleosomes. We analyzed the histone content of all MNase-sensitive complexes by MNase-ChIP-seq and sonication-ChIP-seq. We find that yeast promoters are predominantly bound by non-histone protein complexes, with little evidence for fragile nucleosomes. We do detect MNase-sensitive nucleosomes elsewhere in the genome, including at transcription termination sites. However, they have high A/T content, suggesting that MNase sensitivity does not indicate instability, but rather the preference of MNase for A/T-rich DNA, such that A/T-rich nucleosomes are digested faster than G/C-rich nucleosomes. We confirm our observations by analyzing ChIP-exo, chemical mapping, and ATAC-seq data from other laboratories. Thus, histone ChIP-seq experiments are essential to distinguish nucleosomes from other DNA-binding proteins that protect against MNase.
Assuntos
Nuclease do Micrococo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Composição de Bases , Nucleossomos , Regiões Promotoras GenéticasRESUMO
The eukaryotic nucleosome, the basic unit of chromatin, is thermodynamically stable and plays critical roles in the cell, including the maintenance of DNA topology and regulation of gene expression. At its C2 axis of symmetry, the nucleosome exhibits a domain that can coordinate divalent metal ions. This article discusses the roles of the metal-binding domain in the nucleosome structure, function, and evolution.
Assuntos
Cromatina , Nucleossomos , Nucleossomos/genética , Cromatina/genética , DNA/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismoRESUMO
Inhibition of host DNA damage response (DDR) is a common mechanism used by viruses to manipulate host cellular machinery and orchestrate viral life cycles. Epstein-Barr virus tegument protein BKRF4 associates with cellular chromatin to suppress host DDR signaling, but the underlying mechanism remains elusive. Here, we identify a BKRF4 histone binding domain (residues 15-102, termed BKRF4-HBD) that can accumulate at the DNA damage sites to disrupt 53BP1 foci formation. The high-resolution structure of the BKRF4-HBD in complex with a human H2A-H2B dimer shows that BKRF4-HBD interacts with the H2A-H2B dimer via the N-terminal region (NTR), the DWP motif (residues 80-86 containing D81, W84, P86), and the C-terminal region (CTR). The "triple-anchor" binding mode confers BKRF4-HBD the ability to associate with the partially unfolded nucleosomes, promoting the nucleosome disassembly. Importantly, disrupting the BKRF4-H2A-H2B interaction impairs the binding between BKRF4-HBD and nucleosome in vitro and inhibits the recruitment of BKRF4-HBD to DNA breaks in vivo. Together, our study reveals the structural basis of BKRF4 bindings to the partially unfolded nucleosome and elucidates an unconventional mechanism of host DDR signal attenuation.
Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Interações Hospedeiro-Patógeno , Nucleossomos , Proteínas Virais , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Histonas/metabolismo , Humanos , Nucleossomos/metabolismo , Nucleossomos/virologia , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
An extraordinary degree of condensation is required to fit the eukaryotic genome inside the nucleus. This compaction is attained by first coiling the DNA around structures called nucleosomes. Mammalian genomes are further folded into sophisticated three-dimensional (3D) configurations, enabling the genetic code to dictate a diverse range of cell fates. Recent advances in molecular and computational technologies have enabled the query of higher-order chromatin architecture at an unprecedented resolution and scale. In T lymphocytes, similar to other developmental programs, the hierarchical genome organization is shaped by a highly coordinated division of labor among different classes of sequence-specific transcription factors. In this review, we will summarize the general principles of 1D and 3D genome organization, introduce the common experimental and computational techniques to measure the multilayer chromatin organization, and discuss the pervasive role of transcription factors on chromatin organization in T lymphocytes.
Assuntos
Cromatina , Fatores de Transcrição , Animais , Cromatina/genética , DNA , Genoma , Linfócitos TRESUMO
Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment. The method is based on two subsequent PCRs: first â¼380 bp long DNA strands are generated that contain multiple labels, which are used as "megaprimers" in a second PCR to generate â¼kbp long double-stranded DNA constructs with multiple labels at the respective ends. To achieve high-force stability, we use dibenzocyclooctyne-based click chemistry for covalent attachment to the surface and biotin-streptavidin coupling to the bead. The resulting tethers are torsionally constrained and extremely stable under load, with an average lifetime of 70 ± 3 h at 45 pN. The high yield of the approach enables nucleosome reconstitution by salt dialysis on the functionalized DNA, and we demonstrate proof-of-concept measurements on nucleosome assembly statistics and inner turn unwrapping under force. We anticipate that our approach will facilitate a range of studies of DNA interactions and nucleoprotein complexes under forces and torques.
Assuntos
DNA , Nucleossomos , DNA/química , Fenômenos Mecânicos , Fenômenos Biofísicos , Reação em Cadeia da PolimeraseRESUMO
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Assuntos
Cromatina , Reparo por Excisão , Cromatina/genética , DNA/metabolismo , Dano ao DNA , Nucleossomos/genéticaRESUMO
Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.
Assuntos
Histonas , Nucleossomos , Processamento de Proteína Pós-Traducional , Nucleossomos/metabolismo , Histonas/metabolismo , Humanos , Animais , Cromatina/metabolismo , Montagem e Desmontagem da CromatinaRESUMO
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been instrumental to our current view of chromatin structure and function. It allows genome-wide mapping of histone marks, which demarcate biologically relevant domains. However, ChIP-seq is an ensemble measurement reporting the average occupancy of individual marks in a cell population. Consequently, our understanding of the combinatorial nature of chromatin states relies almost exclusively on correlation between the genomic distributions of individual marks. Here, we report the development of combinatorial-iChIP to determine the genome-wide co-occurrence of histone marks at single-nucleosome resolution. By comparing to a null model, we show that certain combinations of overlapping marks (H3K36me3 and H3K79me3) co-occur more frequently than would be expected by chance, while others (H3K4me3 and H3K36me3) do not, reflecting differences in the underlying chromatin pathways. We further use combinatorial-iChIP to illuminate aspects of the Set2-RPD3S pathway. This approach promises to improve our understanding of the combinatorial complexity of chromatin.
Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Histonas/genética , Nucleossomos/química , Saccharomyces cerevisiae/genética , Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de SinaisRESUMO
N6-methyladenine (6mA) of DNA is an emerging epigenetic mark in the genomes of Chlamydomonas, Caenorhabditis elegans, and mammals recently. Levels of 6mA undergo drastic fluctuation and thus affect fertility during meiosis and early embryogenesis. Here, we showed three complex structures of 6mA demethylase C. elegans NMAD-1A, a canonical isoform of NMAD-1 (F09F7.7). Biochemical results revealed that NMAD-1A prefers 6mA Bubble or Bulge DNAs. Structural studies of NMAD-1A revealed an unexpected "stretch-out" conformation of its Flip2 region, a conserved element that is usually bent over the catalytic center to facilitate substrate base flipping in other DNA demethylases. Moreover, the wide channel between the Flip1 and Flip2 of the NMAD-1A explained the observed preference of NMAD-1A for unpairing substrates, of which the flipped 6mA was primed for catalysis. Structural analysis and mutagenesis studies confirmed that key elements such as carboxy-terminal domain (CTD) and hypothetical zinc finger domain (ZFD) critically contributed to structural integrity, catalytic activity, and nucleosome binding. Collectively, our biochemical and structural studies suggest that NMAD-1A prefers to regulate 6mA in the unpairing regions and is thus possibly associated with dynamic chromosome regulation and meiosis regulation.
Assuntos
Ácidos Nucleicos , Animais , Caenorhabditis elegans/genética , Meiose , DNA , Desmetilação , MamíferosRESUMO
Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.