RESUMO
Objective: To explore the direction and SPV (slow phase velocity) of the components of spontaneous nystagmus (SN) in patients with vestibular neuritis (VN) and the correlation between SN components and affected semicircular canals (SCCs). Additionally, we aimed to elucidate the role of directional features of peripheral SN in diagnosing acute vestibular syndrome. Materials and methods: A retrospective analysis was conducted on 38 patients diagnosed with VN in our hospital between 2022 and 2023. The direction and SPV of SN components recorded with three-dimensional videonystagmography (3D-VNG) and the video head impulse test (vHIT) gain of each SCC were analyzed as observational indicators. We examined the correlation between superior and inferior vestibular nerve damage and the direction and SPV of SN components, and vHIT gain values in VN patients. Results: The median illness duration of between symptom onset and moment of testing was 6 days among the 38 VN patients (17 right VN and 21 left VN). In total, 31 patients had superior vestibular neuritis (SVN), and 7 had total vestibular neuritis (TVN). Among the 38 VN patients, all had horizontal component with an SPV of (7.66 ± 5.37) °/s, 25 (65.8%) had vertical upward component with a SPV of (2.64 ± 1.63) °/s, and 26 (68.4%) had torsional component with a SPV of (4.40 ± 3.12) °/s. The vHIT results in the 38 VN patients showed that the angular vestibulo-ocular reflex (aVOR) gain of the anterior (A), lateral (L), and posterior (P) SCCs on the ipsilesional side were 0.60 ± 0.23, 0.44 ± 0.15 and 0.89 ± 0.19, respectively, while the gains on the opposite side were 0.95 ± 0.14, 0.91 ± 0.08, and 0.96 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gains of A-, L-, and P-SCC on the ipsilesional sides in 31 SVN patients were 0.62 ± 0.24, 0.45 ± 0.16, and 0.96 ± 0.10, while the aVOR gains on the opposite side were 0.96 ± 0.13, 0.91 ± 0.06, and 0.98 ± 0.11, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-SCC on the ipsilesional side and the other SCCs (p < 0.001). In 7 TVN patients, the aVOR gains of A-, L-, and P-SCC on the ipsilesional side were 0.50 ± 0.14, 0.38 ± 0.06, and 0.53 ± 0.07, while the aVOR gains on the opposite side were 0.93 ± 0.17, 0.90 ± 0.16, and 0.89 ± 0.09, respectively. There was a statistically significant difference in the aVOR gain between the A-, L-, and P-SCC on the ipsilesional side and the other SCCs (p < 0.001). The aVOR gain asymmetry of L-SCCs in 38 VN was 36.3%. The aVOR gain asymmetry between bilateral A-SCCs and bilateral P-SCCs for VN patients with and without a vertical upward component was 12.8% and 8.3%, which was statistically significant (p < 0.05). For VN patients with and without a torsional component, the aVOR gain asymmetry of bilateral vertical SCCs was 17.0% and 6.6%, which was statistically significant (p < 0.01). Further analysis revealed a significant positive correlation between the aVOR gain asymmetry of L-SCCs and the SPV of the horizontal component of SN in all VN patients (r = 0.484, p < 0.01), as well as between the asymmetry of bilateral vertical SCCs and the SPV of torsional component in 26 VN patients (r = 0.445, p < 0.05). However, there was no significant correlation between the aVOR gains asymmetry of bilateral A-SCCs and P-SCCs and the SPV of the vertical component in 25 VN patients. Conclusion: There is a correlation between the three-dimensional direction and SPV characteristics of SN and the aVOR gain of vHIT in VN patients. These direction characteristics can help assess different SCCs impairments in patients with unilateral vestibular diseases.
RESUMO
Objective: The study aimed to analyze the three-dimensional characteristics of nystagmus induced by different semicircular canal combinations in healthy young people, and to determine the reference range of nystagmus slow phase velocity (SPV) and its asymmetry. Materials and methods: Fifty-two healthy volunteers (26 males and 26 females, aged 17-42 years, average 23.52 ± 6.59), were recruited to perform the manual triaxial rotation testing with a 3D-Videonystagmography (3D-VNG) device (VertiGoggles (ZT-VNG-II), Shanghai ZEHNIT Medical Technology Co., Ltd., Shanghai, China) using a 0.3 Hz prompt beat and a 90° amplitude, respectively. The induced nystagmus around the Z-, X-, and Y-axes were recorded in the yaw, pitch, and roll planes. The directions and slow phase velocities of the horizontal, vertical, and torsional components of the induced nystagmus under different semicircular canal combinations (the left lateral and right lateral semicircular canal combination, bilateral anterior semicircular canals, bilateral posterior semicircular canals combination, and the anterior and posterior semicircular canals combination of each ear), as well as their asymmetry, were taken as the observation indexes to analyze the characteristics of the nystagmus vectors of different combinations. Results: Fifty-two healthy volunteers had no spontaneous nystagmus. The characteristic nystagmus was induced by the same head movement direction in all three axial rotation tests. The SPVs of the left and right nystagmus were 44.45 ± 15.75°/s and 43.79 ± 5.42°/s, respectively, when the subjects' heads were turned left or right around the Z-axis (yaw). The SPVs of vertically upward and downward nystagmus were 31.67 ± 9.46°/s and 30.01 ± 9.20°/s, respectively, when the subjects' heads were pitched around the X-axis (pitch). The SPVs of torsional nystagmus, with the upper poles of the eyes twisting slowly to the right and left ears (from the participant's perspective), were 28.99 ± 9.20°/s and 28.35 ± 8.17°/s, respectively, when the subjects' heads were turned left or right around the Y-axis (roll). There was no significant difference in the SPVs of nystagmus induced by the same rotation axis in two opposite directions (p > 0.05). The reference ranges for the slow phase velocities (SPVs) of nystagmus induced by the triaxial rotation testing were as follows: For the Z-axis (yaw), the SPVs were 13.58-75.32°/s for leftward head rotation and 13.56-74.02°/s for rightward head rotation. For the X-axis (pitch), the SPVs were 13.13-50.21°/s for upward head nystagmus and 11.98-48.04°/s for downward head nystagmus. For the Y-axis (roll), the SPVs were 10.97-47.02°/s for the left-sided head rotation and 12.34-44.35°/s for the right-sided head rotation. Conclusion: This study clarified the three-dimensional characteristics of nystagmus induced by different semicircular canal combinations in healthy young people. It also established a preliminary reference range of SPVs and SPV asymmetry of nystagmus induced by the vertical semicircular canal. It can further provide a basis for the mechanism of semicircular canal-induced nystagmus and the traceability of nystagmus in patients with otogenic vertigo. It is shown that the portable 3D-VNG eye mask can be used for the manual triaxial rotation testing to achieve the evaluation of the low-frequency angular vestibulo-ocular reflex (aVOR) function of the vertical semicircular canal, which is convenient, efficient, and practical.
RESUMO
Purpose: Diagnosis of Menière's disease (MD) relies on subjective factors and the patients diagnosed with MD may have heterogeneous pathophysiologies. This study aims to stratify MD patients using two objective data, nystagmus videos and contrast-enhanced magnetic resonance imaging (CE-MRI). Methods: This is a retrospective cross-sectional study. According to the Japan Society for Equilibrium Research criteria (c-JSER), adults diagnosed with definite MD and who obtained videos recorded by portable nystagmus recorder immediately following vertigo attacks and underwent CE-MRI of the inner ear were included (ss = 91). Patients who obtained no nystagmus videos, who had undergone sac surgery, and those with long examination intervals were excluded (n = 40). Results: The gender of the subjects was 22 males and 29 females. The age range was 20-82 y, with a median of 54 y. Endolymphatic hydrops (EH) were observed on CE-MRI in 84% (43 patients). Thirty-one patients had unilateral EH. All of them demonstrated EH on the side of the presence of cochlear symptoms. The number of patients who had both nystagmus and EH was 38. Five patients only showed EH and 5 patients only exhibited nystagmus, while 3 patients did not have either. Of the 43 nystagmus records, 32 showed irritative nystagmus immediately after the vertigo episode. The direction of nystagmus later reversed in 44% of cases over 24 h. Conclusion: Patients were stratified into subgroups based on the presence or absence of EH and nystagmus. The side with cochlear symptoms was consistent with EH. The c-JSER allows for the diagnosis of early-stage MD patients, and it can be used to treat early MD and preserve hearing; however, this approach may also include patients with different pathologies.