Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(50): e2123512119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469772

RESUMO

A defining feature of Earth's present-day climate is that the Southern Hemisphere is stormier than the Northern Hemisphere. Consistently, the Southern Hemisphere has a stronger jet stream and more extreme weather events than the Northern Hemisphere. Understanding the relative importance of land-ocean contrast, including topography, radiative processes, and ocean circulation for determining this storminess asymmetry is important and may be helpful for interpreting projections of future storminess. Here, we show that the stormier Southern Hemisphere is induced by nearly equal contributions from topography and the ocean circulation, which moves energy from the Southern to Northern Hemisphere. These findings are based on 1) diagnostic energetic analyses applied to observations and climate model simulations and 2) modifying surface (land and ocean) boundary conditions in climate model simulations. Flattening topography and prescribing hemispherically symmetric surface energy fluxes (the manifestation of ocean energy transport on the atmosphere) in a climate model reduce the storminess asymmetry from 23 to 12% and 11%, respectively. Finally, we use the energetic perspective to interpret storminess trends since the beginning of the satellite era. We show that the Southern Hemisphere has become stormier, consistent with implied ocean energy transport changes in the Southern Ocean. In the Northern Hemisphere, storminess has not changed significantly consistent with oceanic and radiative (increased absorption of sunlight due to the loss of sea ice and snow) changes opposing one another. The trends are qualitatively consistent with climate model projections.


Assuntos
Mudança Climática , Clima , Oceanos e Mares , Atmosfera , Camada de Gelo
2.
Proc Natl Acad Sci U S A ; 119(17): e2115346119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446685

RESUMO

The Eocene­Oligocene Transition (∼33.9 Ma) marks the largest step transformation within the Cenozoic cooling trend and is characterized by a sudden growth of the Antarctic ice sheets, cooling of the interior ocean, and the establishment of strong meridional temperature gradients. Here we examine the climatic impact of oceanic gateway changes at the Eocene­Oligocene Transition by implementing detailed paleogeographic reconstructions with realistic paleobathymetric models for the Atlantic­Arctic basins in a state-of-the-art earth system model (the Norwegian Earth System Model [NorESM-F]). We demonstrate that the warm Eocene climate is highly sensitive to depth variations of the Greenland­Scotland Ridge and the proto­Fram Strait as they control the freshwater leakage from the Arctic to the North Atlantic. Our results, and proxy evidence, suggest that changes in these gateways controlled the ocean circulation and played a critical role in the growth of land-based ice sheets, alongside CO2-driven global cooling. Specifically, we suggest that a shallow connection between the Arctic and North Atlantic restricted the southward flow of fresh surface waters during the Late Eocene allowing for a North Atlantic overturning circulation. Consequently, the Southern Hemisphere cooled by several degrees paving the way for the glaciation of Antarctica. Shortly after, the connection to the Arctic deepened due to weakening dynamic support from the Iceland Mantle Plume. This weakened the North Atlantic overturning and cooled the Northern Hemisphere, thereby promoting glaciations there. Our study points to a controlling role of the Northeast Atlantic gateways and decreasing atmospheric CO2 in the onset of glaciations in both hemispheres.

3.
Glob Chang Biol ; 30(1): e17124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273488

RESUMO

The marine biological carbon pump (BCP) stores carbon in the ocean interior, isolating it from exchange with the atmosphere and thereby coregulating atmospheric carbon dioxide (CO2 ). As the BCP commonly is equated with the flux of organic material to the ocean interior, termed "export flux," a change in export flux is perceived to directly impact atmospheric CO2 , and thus climate. Here, we recap how this perception contrasts with current understanding of the BCP, emphasizing the lack of a direct relationship between global export flux and atmospheric CO2 . We argue for the use of the storage of carbon of biological origin in the ocean interior as a diagnostic that directly relates to atmospheric CO2 , as a way forward to quantify the changes in the BCP in a changing climate. The diagnostic is conveniently applicable to both climate model data and increasingly available observational data. It can explain a seemingly paradoxical response under anthropogenic climate change: Despite a decrease in export flux, the BCP intensifies due to a longer reemergence time of biogenically stored carbon back to the ocean surface and thereby provides a negative feedback to increasing atmospheric CO2 . This feedback is notably small compared with anthropogenic CO2 emissions and other carbon-climate feedbacks. In this Opinion paper, we advocate for a comprehensive view of the BCP's impact on atmospheric CO2 , providing a prerequisite for assessing the effectiveness of marine CO2 removal approaches that target marine biology.


Assuntos
Dióxido de Carbono , Proteínas de Membrana Transportadoras , Dióxido de Carbono/análise , Atmosfera , Mudança Climática , Oceanos e Mares
4.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220189, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866386

RESUMO

In 1982, Talley and McCartney used the low potential vorticity signature of Labrador Sea Water (LSW) to make the first North Atlantic maps of its properties. Forty years later, our understanding of LSW variability, spreading time scales and importance has deepened. In this review and synthesis article, I showcase recent observational advances in our understanding of how LSW spreads from its formation regions into the Deep Western Boundary Current and southward into the subtropical North Atlantic. I reconcile the fact that decadal variability in LSW formation is reflected in the Deep Western Boundary Current with the fact that LSW formation does not control subpolar overturning strength and discuss hypothesized connections between LSW spreading and decadal Atlantic Meridional Overturning Circulation variability. Ultimately, LSW spreading is of fundamental interest because it is a significant pathway for dissolved gasses such as oxygen and carbon dioxide into the deep ocean. We should hence prioritize adding dissolved gas measurements to standard hydrographic and circulation observations, particularly at targeted western boundary locations. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

5.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220188, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866389

RESUMO

Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

6.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220070, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150199

RESUMO

The 5-year Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) programme and its 1-year extension ENCORE (ENCORE is the National Capability ORCHESTRA Extension) was an approximately 11-million-pound programme involving seven UK research centres that finished in March 2022. The project sought to radically improve our ability to measure, understand and predict the exchange, storage and export of heat and carbon by the Southern Ocean. It achieved this through a series of milestone observational campaigns in combination with model development and analysis. Twelve cruises in the Weddell Sea and South Atlantic were undertaken, along with mooring, glider and profiler deployments and aircraft missions, all contributing to measurements of internal ocean and air-sea heat and carbon fluxes. Numerous forward and adjoint numerical experiments were developed and supported by the analysis of coupled climate models. The programme has resulted in over 100 peer-reviewed publications to date as well as significant impacts on climate assessments and policy and science coordination groups. Here, we summarize the research highlights of the programme and assess the progress achieved by ORCHESTRA/ENCORE and the questions it raises for the future. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

7.
Proc Natl Acad Sci U S A ; 117(27): 15504-15510, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571954

RESUMO

Earth system models (ESMs) project that global warming suppresses biological productivity in the Subarctic Atlantic Ocean as increasing ocean surface buoyancy suppresses two physical drivers of nutrient supply: vertical mixing and meridional circulation. However, the quantitative sensitivity of productivity to surface buoyancy is uncertain and the relative importance of the physical drivers is unknown. Here, we present a simple predictive theory of how mixing, circulation, and productivity respond to increasing surface buoyancy in 21st-century global warming scenarios. With parameters constrained by observations, the theory suggests that the reduced northward nutrient transport, owing to a slower ocean circulation, explains the majority of the reduced productivity in a warmer climate. The theory also informs present-day biases in a set of ESM simulations as well as the physical underpinnings of their 21st-century projections. Hence, this theoretical understanding can facilitate the development of improved 21st-century projections of marine biogeochemistry and ecosystems.


Assuntos
Organismos Aquáticos/metabolismo , Ecossistema , Aquecimento Global , Modelos Teóricos , Água do Mar/química , Organismos Aquáticos/efeitos da radiação , Oceano Atlântico , Atmosfera/análise , Atmosfera/química , Planeta Terra , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Gases de Efeito Estufa/efeitos adversos , Gases de Efeito Estufa/análise , Nitratos/análise , Nitratos/metabolismo , Nutrientes/metabolismo , Luz Solar , Movimentos da Água
8.
Global Biogeochem Cycles ; 36(7): e2021GB007156, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36248262

RESUMO

The deep ocean releases large amounts of old, pre-industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2 release is relevant to the global climate because its changes could alter atmospheric CO2 levels on long time scales, and also affects the present-day potential of the Southern Ocean to take up anthropogenic CO2. Here, year-round profiling float measurements show that this CO2 release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea-ice edge. This band of high CO2 subsurface water coincides with the outcropping of the 27.8 kg m-3 isoneutral density surface that characterizes Indo-Pacific Deep Water (IPDW). It has a potential partial pressure of CO2 exceeding current atmospheric CO2 levels (∆PCO2) by 175 ± 32 µatm. Ship-based measurements reveal that IPDW exhibits a distinct ∆PCO2 maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2 decreases. Most of this vertical ∆PCO2 decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2 outgassing from the high-carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2 fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.

9.
Proc Natl Acad Sci U S A ; 116(3): 915-922, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598441

RESUMO

Dispersal provides a key mechanism for geographical range shifts in response to changing environmental conditions. For mangroves, which are highly susceptible to climate change, the spatial scale of dispersal remains largely unknown. Here we use a high-resolution, eddy- and tide-resolving numerical ocean model to simulate mangrove propagule dispersal across the global ocean and generate connectivity matrices between mangrove habitats using a range of floating periods. We find high rates of along-coast transport and transoceanic dispersal across the Atlantic, Pacific, and Indian Oceans. No connectivity is observed between populations on either side of the American and African continents. Archipelagos, such as the Galapagos and those found in Polynesia, Micronesia, and Melanesia, act as critical stepping-stones for dispersal across the Pacific Ocean. Direct and reciprocal dispersal routes across the Indian Ocean via the South Equatorial Current and seasonally reversing monsoon currents, respectively, allow connectivity between western Indian Ocean and Indo-West Pacific sites. We demonstrate the isolation of the Hawaii Islands and help explain the presence of mangroves on the latitudinal outlier Bermuda. Finally, we find that dispersal distance and connectivity are highly sensitive to the minimum and maximum floating periods. We anticipate that our findings will guide future research agendas to quantify biophysical factors that determine mangrove dispersal and connectivity, including the influence of ocean surface water properties on metabolic processes and buoyancy behavior, which may determine the potential of viably reaching a suitable habitat. Ultimately, this will lead to a better understanding of global mangrove species distributions and their response to changing climate conditions.


Assuntos
Avicennia/fisiologia , Mudança Climática , Modelos Biológicos , Áreas Alagadas
10.
BMC Evol Biol ; 20(1): 100, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778052

RESUMO

BACKGROUND: Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS: We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS: As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.


Assuntos
Alveolados/genética , Genética Populacional , Genômica , Adaptação Biológica , Animais , Recifes de Corais , Fluxo Gênico
11.
Proc Natl Acad Sci U S A ; 113(16): 4278-83, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044090

RESUMO

Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.


Assuntos
Mudança Climática , Modelos Teóricos , Oceanos e Mares , Salinidade , Animais
12.
Proc Natl Acad Sci U S A ; 113(11): 2976-81, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929376

RESUMO

Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.


Assuntos
Organismos Aquáticos , Fontes Hidrotermais , Distribuição Animal , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Biota , Bivalves/crescimento & desenvolvimento , Ecossistema , Gastrópodes/crescimento & desenvolvimento , Variação Genética , Larva , Modelos Teóricos , Oceano Pacífico , Plâncton , Temperatura , Thoracica/crescimento & desenvolvimento , Movimentos da Água
13.
Glob Chang Biol ; 23(7): 2602-2617, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27935174

RESUMO

Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The » degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification.


Assuntos
Mudança Climática , Ecossistema , Aquecimento Global , Movimentos da Água , Dióxido de Carbono , Clima , Oceanos e Mares , Água do Mar
14.
Proc Natl Acad Sci U S A ; 111(15): 5480-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706801

RESUMO

Recent theories for glacial-interglacial climate transitions call on millennial climate perturbations that purged the deep sea of sequestered carbon dioxide via a "bipolar ventilation seesaw." However, the viability of this hypothesis has been contested, and robust evidence in its support is lacking. Here we present a record of North Atlantic deep-water radiocarbon ventilation, which we compare with similar data from the Southern Ocean. A striking coherence in ventilation changes is found, with extremely high ventilation ages prevailing across the deep Atlantic during the last glacial period. The data also reveal two reversals in the ventilation gradient between the deep North Atlantic and Southern Ocean during Heinrich Stadial 1 and the Younger Dryas. These coincided with periods of sustained atmospheric CO2 rise and appear to have been driven by enhanced ocean-atmosphere exchange, primarily in the Southern Ocean. These results confirm the operation of a bipolar ventilation seesaw during deglaciation and underline the contribution of abrupt regional climate anomalies to longer-term global climate transitions.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Radioisótopos de Carbono/análise , Camada de Gelo , Água do Mar/química , Movimentos da Água , Regiões Antárticas , Oceano Atlântico , Geografia , História Antiga
15.
Proc Natl Acad Sci U S A ; 111(24): 8753-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889624

RESUMO

In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.


Assuntos
Camada de Gelo , Oceanos e Mares , Algoritmos , Regiões Antárticas , Ciclo do Carbono , Clima , Simulação por Computador , Modelos Teóricos , Oceanografia , Água do Mar , Fatores de Tempo , Movimentos da Água
16.
Proc Natl Acad Sci U S A ; 111(31): 11263-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049405

RESUMO

The last interglacial interval was terminated by the inception of a long, progressive glaciation that is attributed to astronomically influenced changes in the seasonal distribution of sunlight over the earth. However, the feedbacks, internal dynamics, and global teleconnections associated with declining northern summer insolation remain incompletely understood. Here we show that a crucial early step in glacial inception involves the weakening of the subpolar gyre (SPG) circulation of the North Atlantic Ocean. Detailed new records of microfossil foraminifera abundance and stable isotope ratios in deep sea sediments from Ocean Drilling Program site 984 south of Iceland reveal repeated, progressive cold water-mass expansions into subpolar latitudes during the last peak interglacial interval, marine isotope substage 5e. These movements are expressed as a sequence of progressively extensive southward advances and subsequent retreats of a hydrographic boundary that may have been analogous to the modern Arctic front, and associated with rapid changes in the strength of the SPG. This persistent millennial-scale oceanographic oscillation accompanied a long-term cooling trend at a time of slowly declining northern summer insolation, providing an early link in the propagation of those insolation changes globally, and resulting in a rapid transition from extensive regional warmth to the dramatic instability of the subsequent ∼ 100 ka.


Assuntos
Camada de Gelo , Oceanografia , Animais , Oceano Atlântico , Foraminíferos/fisiologia , Geografia , Sedimentos Geológicos , Islândia , Fatores de Tempo , Movimentos da Água
17.
Proc Biol Sci ; 283(1832)2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252021

RESUMO

Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population.


Assuntos
Distribuição Animal , Tartarugas/fisiologia , Exoesqueleto , Animais , Ecologia/métodos , Ecossistema , Japão , Oceanos e Mares
18.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974518

RESUMO

Predictions of organismal movements in a fluid require knowing the fluid's velocity and potential contributions of the organism's behaviour (e.g. swimming or flying). While theoretical aspects of this work are reasonably well-developed, field-based validation is challenging. A much-needed study recently published by Briscoe and colleagues in Proceedings of the Royal Society B compared movements and distribution of satellite-tracked juvenile sea turtles to virtual particles released in a data-assimilating hindcast ocean circulation model. Substantial differences observed between turtles and particles were considered evidence for an important role of active swimming by turtles. However, the experimental design implicitly assumed that transport predictions were insensitive to (i) start location, (ii) tracking duration, (iii) depth, and (iv) physical processes not depicted in the model. Here, we show that the magnitude of variation in physical parameters between turtles and virtual particles can profoundly alter transport predictions, potentially sufficient to explain the reported differences without evoking swimming behaviour. We present a more robust method to derive the environmental contributions to individual movements, but caution that resolving the ocean velocities experienced by individual organisms remains a problem for assessing the role of behaviour in organismal movements and population distributions.


Assuntos
Distribuição Animal , Natação , Tartarugas/fisiologia , Movimentos da Água , Animais , Modelos Teóricos , Movimento , Oceanos e Mares , Telemetria
19.
Glob Chang Biol ; 21(12): 4377-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26268457

RESUMO

Human-induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has rarely been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy-resolving ocean model in south-eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross-current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south-eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~4% and the settlement peak shifts poleward by ~270 km in the model simulation. Thus, ocean circulation may be one of the dominant factors contributing to climate-induced changes of species ranges.


Assuntos
Distribuição Animal , Mudança Climática , Longevidade , Palinuridae/fisiologia , Movimentos da Água , Animais , Austrália , Larva/crescimento & desenvolvimento , Larva/fisiologia , Modelos Teóricos , Palinuridae/crescimento & desenvolvimento , Temperatura
20.
J Exp Biol ; 218(Pt 7): 1044-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25833134

RESUMO

During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics.


Assuntos
Migração Animal/fisiologia , Campos Magnéticos , Tartarugas/fisiologia , Animais , Oceano Atlântico , Simulação por Computador , Sinais (Psicologia) , Ecossistema , Orientação , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa