Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 89(6): 2318-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744719

RESUMO

PURPOSE: To demonstrate the feasibility of using octafluorocyclobutane (OFCB, c-C4 F8 ) for T1 mapping of lungs in 19 F MRI. METHODS: The study was performed at 7 T in three healthy rats and three rats with pulmonary hypertension. To increase the sensitivity of 19 F MRI, a bent-shaped RF coil with periodic metal strips structure was used. The double flip angle method was used to calculate normalized transmitting RF field (B1n + ) maps and for correcting T1 maps built with the variable flip angle (VFA) method. The ultrashort TE pulse sequence was applied for acquiring MR images throughout the study. RESULTS: The dependencies of OFCB relaxation times on its partial pressure in mixtures with oxygen, air, helium, and argon were obtained. T1 of OFCB linearly depended on its partial pressure with the slope of about 0.35 ms/kPa in the case of free diffusion. RF field inhomogeneity leads to distortion of T1 maps built with the VFA method, and therefore to high standard deviation of T1 in these maps. To improve the accuracy of the T1 maps, the B1n + maps were applied for VFA correction. This contributed to a 2-3-fold decrease in the SD of T1 values in the corresponding maps compared with T1 maps calculated without the correction. Three-dimensional T1 maps were obtained, and the mean T1 in healthy rat lungs was 35 ± 10 ms, and in rat lungs with pulmonary hypertension - 41 ± 9 ms. CONCLUSION: OFCB has a spin-rotational relaxation mechanism and can be used for 19 F T1 mapping of lungs. The calculated OFCB maps captured ventilation defects induced by edema.


Assuntos
Hipertensão Pulmonar , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas
2.
Magn Reson Med ; 85(2): 987-994, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32789900

RESUMO

PURPOSE: To test octafluorocyclobutane (OFCB) as an inhalation contrast agent for fluorine-19 MRI of the lung, and to compare the image quality of OFCB scans with perfluoropropane (PFP) scans THEORY AND METHODS: After normalizing for the number of signal averages, a theoretical comparison between the OFCB signal-to-noise ratio (SNR) and PFP SNR predicted the average SNR advantage of 90% using OFCB during gradient echo imaging. The OFCB relaxometry was conducted using single-voxel spectroscopy and spin-echo imaging. A comparison of OFCB and PFP SNRs was performed in vitro and in vivo. Five healthy Sprague-Dawley rats were imaged during single breath-hold and continuous breathing using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). The scan time was constant for both gases. Statistical comparison between PFP and OFCB scans was conducted using a paired t test and by calculating the Bayes factor. RESULTS: Spin-lattice (T1 ) and effective spin-spin ( T2∗ ) relaxation time constants of the pure OFCB gas were determined as 28.5 ± 1.2 ms and 10.5 ± 1.8 ms, respectively. Mixing with 21% of oxygen decreased T1 by 30% and T2∗ by 20%. The OFCB in vivo images showed 73% higher normalized SNR on average compared with images acquired using PFP. The statistical significance was shown by both paired t test and calculated Bayes factors. The experimental results agree with theoretical calculations within the error of the relaxation parameter measurements. CONCLUSION: The quality of the lung images acquired using OFCB was significantly better compared with PFP scans. The OFCB images had higher a SNR and were artifact-free.


Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Animais , Teorema de Bayes , Clorofluorcarbonetos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ratos , Ratos Sprague-Dawley
3.
Magn Reson Med ; 84(4): 2117-2123, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32274848

RESUMO

PURPOSE: The aim of this study was to demonstrate the feasibility of fluorine-19 (19 F) MRI of the human lungs using octafluorocyclobutane (OFCB, C4 F8 ). This gas has 8 magnetically equivalent fluorine nuclei and relatively long T1 and T2 (˜50 ms), which render it suitable as an MRI contrast agent. Previous experiments in small laboratory animals showed that OFCB could be successfully used as an alternative to the gases often used for 19 F MRI (sulfur hexafluoride and perfluoropropane). METHODS: One male volunteer participated in this study. Immediately before an MRI scan, the volunteer inhaled the gas mixture-80% OFCB with 20% oxygen-and held his breath. Experiments were performed on a 0.5T whole-body MR scanner with a customized transmit-receive coil tuned at 19 F frequency. Fast spin echo in 2D and 3D modes was used for image acquisition. 2D images were obtained with in-plane resolution of 10 × 10 mm2 without slice selection. 3D images were obtained with the voxel size of 10 × 10 × 30 mm2 . Breath-hold duration was 20 s for 2D and 40 s for 3D imaging, respectively. RESULTS: Anatomically consistent 19 F MR images of the human lungs were obtained with SNR around 50 in 2D mode and 20 in 3D mode. 3D volumetric images of the lungs were reconstructed and provided physiologically reasonable volume estimates. CONCLUSION: The application of OFCB enables informative 19 F lung imaging even at low magnetic field strengths. The OFCB gas shows promise as an inhalable contrast agent for fluorine lung MRI and has a potential for clinical translation.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Animais , Clorofluorcarbonetos , Meios de Contraste , Humanos , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Masculino
4.
Environ Sci Pollut Res Int ; 28(41): 57619-57628, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34089162

RESUMO

Octafluorocyclobutane (C4F8) with a GWP100 (global warming potential) of 10,000 times of CO2 is listed as potent greenhouse gas. Therefore, development of effective control technologies for reducing C4F8 emissions has become an emerging issue to be addressed. In this study, decomposition of C4F8 was investigated via three systems including catalytic hydrolysis, non-thermal plasma, and plasma catalysis, respectively. Decomposition of C4F8 achieved with catalytic hydrolysis reaches the highest efficiency of 20.1%, being obtained with γ-Al2O3 as catalyst in the presence of 10% H2O(g) and operating temperature of 800 °C. For plasma-based system, the highest C4F8 conversion obtained with non-thermal plasma is 62% at a voltage of 23 kV. As for the plasma catalysis system, 100% C4F8 conversion efficiency can be achieved at an applied voltage of 22-23 kV. The effects of various parameters such as gas flow rate and C4F8 concentration on plasma-based system show that the plasma catalysis also has better resistivity for the high gas flow rate. The highest energy efficiency of 0.75 g/kWh is obtained for the gas flow rate of 500 mL/min, with the C4F8 conversion of 41%. The highest conversion 89% was achieved with the O2 content of 0.5%. Addition of Ar improves the performance of plasma-based system. When Ar is controlled at 20%, C4F8 conversions obtained with plasma catalysis reach 100% at applied voltage of 22-23 kV even in the presence of 5% O2. The main products of the C4F8 conversion include CO2, NOx, and COF2 when O2 is added into the system. As water vapor is added, HF is also formed. This study has confirmed that combined non-thermal plasma with catalyst system to convert C4F8 is indeed feasible and has good potential for further development.


Assuntos
Poluição do Ar , Catálise
5.
Front Chem ; 4: 47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018899

RESUMO

Octafluorocyclobutane, c-C4F8, and its derivatives are regarded as promising replacements of insulation gaseous SF6, which are currently widely used in electric equipment but suffer greatly from its greenhouse effect. Based on the recent finding that the dielectric and thermodynamics properties of insulating gases are greatly dependent on the molecule's microscopic electronic and vibrational parameters, in this work, we use density functional theory (DFT) to study the molecular structures, electron affinities, and IR-active vibrational frequencies as well as thermodynamic properties for c-C4F8 and a series of mono-, di-substituted c-C4F8 compounds. It is shown that DFT calculation of perfluoro-compounds is sensitive to the chosen functional. Although all chloro-substituted c-C4F8 molecules are found to have much larger electron affinities, only part of them have less IR intensity in the atmospheric IR "window" than c-C4F8. Such a study provides useful guideline for the pre-screening search for new insulation gases via electronic structure calculations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa